Exercise 8.5 Determining Geometry Using VSEPR

1.	For each of the molecules listed below:			
	 Identify the electron group geometry of Identify the molecular geometry. Redraw the molecule to show the molecular geometry. Redraw the molecule to show the molecular geometry. Use the ~ symbol to indicate the number of the control of the control	Include any non-zero formal charges on the appropriate atoms. Identify the electron group geometry of the central atom. Identify the molecular geometry. Redraw the molecular geometry. Label bond angles. Angles should be accurate to the number of sig. fig. shown. (e.g. 109.5°) Use the \sim symbol to indicate approximate angles. (e.g. $\sim 109.5^{\circ}$) Use the $<$ symbol to indicate that an angle is close to $-$ but definitely smaller than $-$ a given value. (e.g. $< 109.5^{\circ}$) Use the $>$ symbol to indicate that an angle is close to $-$ but definitely larger than $-$ a		
(a)	SO_2	(b)	$BeCl_2$	
(c)	OF_2	(d)	XeF_2	

(f)

 XeO_3

(e)

 BBr_3

(g) ClF₃

(h) SF₄

(i) XeF₄

(j) XeO₄

(k) ClF₅

(l) PCl₅

(m) SCl₆