Answers to Exercise 8.7 Bond Length and Bond Energy

Bond	Bond Length	Enthalpy of Bond Dissociation
H-F	92 pm	565 kJ/mol
H-Cl	127 pm	427 kJ/mol
Cl-Cl	199 pm	243 kJ/mol
Cl-Br	214 pm	215 kJ/mol
Br-Br	228 pm	193 kJ/mol
Br-I	248 pm	175 kJ/mol
I-I	266 pm	151 kJ/mol

1. Complete the table below given the available information.

Bond length increases as the atoms become larger. (It also increases as bond order decreases; however, atom size is a more important factor.)

The energy required to break a bond (approximated here as "enthalpy of bond dissociation") tends to decrease as bond length increases. As a general rule, shorter bonds tend to be stronger.

2. The enthalpy change for a reaction can be estimated by subtracting the heat released by forming bonds from the heat consumed by breaking bonds

Step 1: Draw Lewis diagrams for all molecules in the balanced reaction equation

Step 2: Identify which bonds will be formed and which bonds will be broken

Bonds formed: four C-H and one C-C

Bonds broken: two H-H and one $C \equiv C$

There is no way to directly calculate the difference between the C-C and C=C bonds. You have to imagine completely breaking the triple bond then forming a new single bond.

Step 3: Calculate the enthalpy change from forming and breaking bonds

$$\begin{aligned} \Delta H &\approx \sum \Delta_{bd} H(bonds \ broken) - \sum \Delta_{bd} H(bonds \ formed) \\ \Delta H &\approx \left[2\Delta_{bd} H(H-H) + \Delta_{bd} H(C \equiv C) \right] - \left[4\Delta_{bd} H(C-H) + \Delta_{bd} H(C-C) \right] \\ \Delta H &\approx \left[2 \left(432 \frac{kJ}{mol} \right) + \left(839 \frac{kJ}{mol} \right) \right] - \left[4 \left(413 \frac{kJ}{mol} \right) + \left(347 \frac{kJ}{mol} \right) \right] \\ \Delta H &\approx -296 \frac{kJ}{mol} \end{aligned}$$

Step 4: Check your work

Does your answer seem reasonable? Are sig. fig. correct?