Exercise 9.7
 Ideal and Nonideal Gases

1.

(a) Under what conditions is it reasonable to treat a gas as "ideal"?
(b) Consider water and silane $\left(\mathrm{SiH}_{4}\right)$ as nonideal gases.
(i) For water, $a=0.5537 \mathrm{~Pa} \mathrm{~m}^{6} \mathrm{~mol}^{-2}$. For silane, $a=0.437 \mathrm{~Pa} \mathrm{~m}^{6} \mathrm{~mol}^{-2}$. Explain why a is larger for water. The purpose of the van der Waals constant a must be clear from your explanation.
(ii) For water, $b=3.05 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. For silane, $b=5.79 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. Explain why b is larger for silane. The purpose of the van der Waals constant b must be clear from your explanation.
(c) What is the pressure that is exerted by 2.5 moles of $\mathrm{SiH}_{4(\mathrm{~g})}$ in a $2.5 \mathrm{~m}^{3}$ container at $25^{\circ} \mathrm{C}$ when it is considered to behave as an ideal gas? Is it likely that this pressure is approximately accurate, or should SiH_{4} behave as a nonideal gas under these conditions? Briefly, justify your answer.
2. A 5.00 L flask contains $450 \mathrm{~g} \mathrm{CH}_{4}$ at $0^{\circ} \mathrm{C}$. Use the van der Waals equation of state to predict the pressure in this flask.
The van der Waals parameters for CH_{4} are $a=0.2303 \frac{\mathrm{~Pa} \mathrm{\cdot m}}{\mathrm{~mol}^{2}}$ and $b=4.31 \times 10^{-5} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}$.

