

Topic \#2: The Chemical Alphabet Fall 2020 Dr. Susan Findlay

Forms of Carbon

The Periodic Table: A Chemical Index

- In 1869, Dmitri Mendeleev (1834-1907) noticed that certain elements exhibited similar behaviour - most notably, the ratios with which they formed molecules with hydrogen and with oxygen. By arranging the elements in order of increasing mass and such that similar elements formed columns, he developed the first periodic table:

TABELLE II

$\begin{aligned} & \text { zu } \\ & \text { w } \\ & \underline{\underline{w}} \end{aligned}$	$\begin{gathered} \text { GRUPPE I. } \\ -\quad \text { R20 } \end{gathered}$	$\begin{gathered} \text { GRUPPE II. } \\ \overline{R O} \end{gathered}$	$\begin{gathered} \text { GRUPPE III. } \\ R^{2} 0^{3} \end{gathered}$	$\begin{gathered} \hline \text { GRUPPE IV. } \\ \text { RH } \\ \text { RO2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { GRUPPE V. } \\ \text { RH } H^{3} \\ R^{205} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { GRUPPE VI. } \\ R^{2} H^{2} \\ R^{3} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { GRUPPE VII } \\ \text { RH } \\ R^{2} 0^{7} \\ \hline \end{array}$	GRUPPE VIII. RO4
$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	$L_{i=7} \quad \mathrm{H}=1$	$B e=9,4$	$B=11$	$c=12$	$N=14$	$0=16$	$F=19$	
3	$\mathrm{Na}=23$	$\mathrm{Mg}=24$	Al $=27,3$	Si $=28$	$P=31$	$\mathrm{s}=32$	Cl $=35,5$	
4	$K=39$	$C O=40$	- $=44$	$\mathrm{Ti}^{\text {¢ }}$ 48	$v=51$	$C r=52$	$M n=55$	$\left\{\begin{array}{l} F E=56, C_{0}=59, \\ N i=59, C u=63 . \end{array}\right.$
5	($\mathrm{Cu}=63$)	$2 \mathrm{n}=65$	$-=68$	- $=72$	AS $=75$	Se $=78$	$\mathrm{Br}=80$	
6	$R \mathrm{~b}=85$	$\mathrm{Sr}=87$? $\mathrm{Yt}=88$	$z r=90$	$\mathrm{Nb}=94$	$M_{0}=96$	- $=100$	$\begin{aligned} R u & =104, R h=104, \\ P d & =106, A g=108 . \end{aligned}$
7	($\mathrm{Ag}=108$)	$\mathrm{Cd}=112$	$\mathrm{In}=113$	$\mathrm{Sn}=118$	Sb $=122$	Te $=125$	$J=127$	
8	cs = 133	$B a=137$	$P D_{i}=138$? $C 8=140$		-	-	- - -
9 10	- (-)		$p E r=178$? $\mathrm{L} a=180^{-}$	$T a=182^{-}$	$w=184^{-}$	- -	$\begin{aligned} 0 s & =195, I r=197, \\ P t & =198, A U=199 . \end{aligned}$
11	($A \cup=199)$	$\mathrm{Hg}=200$	TI $=204$	$\mathrm{Pb}=207$	$\mathrm{Bi}_{\mathrm{i}}=208$	-	-	
12	-	-	-	Th=231	-	$v=240$	-	- -

The Periodic Table: A Chemical Index

- Mendeleev's periodic table was incomplete - all of the \qquad were missing, but it was remarkably accurate in other respects. If there appeared to be a 'missing' element, he left a blank space, assuming that it would be discovered at a later date. He was proven correct with the discoveries of (69.7 u) in 1875 and \qquad (72.6 u) in 1886.
- In 1913, H.G.J. Moseley (1887-1915) noted that the periodic table would be more descriptive if the elements were listed in order of increasing \qquad rather than increasing mass. This led to the modern periodic table and law of periodicity:

The Periodic Table: A Chemical Index

1	Periodic Table with Element Names (using the 1-18 group nomenclature)																18
$\begin{array}{\|c} \hline \text { Hydrogen } \\ 1.0079 \\ \mathbf{H} \end{array}$												13	14	15	16	17	Helium 4.0026 $\mathbf{H e}$
1																	2
$\begin{array}{\|c} \begin{array}{l} \text { Lithium } \\ 6.941 \\ { }_{3} \\ \mathbf{L i} \\ \hline \end{array} \\ \hline \end{array}$	$$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{\|c} \hline \text { Boron } \\ 10.811 \\ 5 \end{array}$	$\underbrace{}_{6} \begin{gathered} \text { Carbon } \\ 12.011 \\ 6 \end{gathered}$	$\begin{gathered} \text { Nitrogen } \\ 14.0067 \\ \\ 7 \end{gathered}$	$\begin{array}{\|r} \hline \text { Oxygen } \\ 15.9994 \\ 8 \\ 8 \\ 8 \end{array}$	$\begin{array}{\|c} \hline \text { Fluorine } \\ 18.9984 \\ \\ \hline \\ \hline \end{array}$	
$\begin{aligned} & \hline \begin{array}{l} \text { Sodium } \\ 22.9898 \\ \mathbf{N a} \\ 11 \end{array} \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { Magnesium } \\ & 24.3050 \\ & { }_{12} \mathbf{M g} \end{aligned}$											$\begin{array}{\|ll} \text { Aluminum } \\ 26.9815 \\ 13 & \text { Al } \end{array}$	$\begin{array}{\|c} \hline \text { Silicon } \\ 28.0855 \\ \\ \\ 14 \\ \hline \end{array}$	$$	$\begin{array}{\|l} \hline \text { Sulfur } \\ { }_{16}^{32.066} \\ \\ \mathbf{S} \end{array}$	$\begin{aligned} & \hline \text { Chlorine } \\ & 35.4527 \\ & { }_{17} \text { Cl } \end{aligned}$	$\begin{aligned} & \text { Argon } \\ & 39.948 \\ & { }_{18} \mathbf{A r} \end{aligned}$
$\begin{array}{\|l} \hline \text { Potassium } \\ 39.0983 \\ 19 \end{array}$	$\begin{aligned} & \hline \text { Calcium } \\ & 40.078 \\ & { }_{20} \quad \text { Ca } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Scandium } \\ & 44.9559 \\ & \\ & \\ & 21 \end{aligned} \quad \text { Sc }$	$\int_{22} \begin{aligned} & \text { Titanium } \\ & 47.88 \\ & \\ & \hline \mathbf{T i} \\ & \hline \end{aligned}$	Vanadium 50.9415 23	$\begin{aligned} & \text { Chromium } \\ & 51.9961 \\ & { }_{24} \quad \mathbf{C r} \end{aligned}$	$\begin{aligned} & \text { Manganese } \\ & 54.9380 \\ & \mathbf{M n} \\ & 25 \end{aligned}$	$\begin{array}{\|l} \hline \text { Iron } \\ 55.847 \\ \\ 26 \end{array} \text { Fe }$	Cobalt 58.9332 27	$\|$Nickel 58.693 28 $\mathbf{N i}$	$\begin{aligned} & \text { Copper } \\ & { }_{29}^{63.546} \\ & \\ & \mathbf{C u} \end{aligned}$	$\begin{array}{\|l} \hline \text { Zinc } \\ 65.39 \\ \quad \mathbf{Z n} \\ 30 \end{array}$	$\begin{array}{\|l} \hline \text { Gallium } \\ 69.723 \\ \\ \\ 31 \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Germanium } \\ 72.61 \\ { }_{32} \\ \mathbf{G e} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Arsenic } \\ 74.9216 \\ \text { As } \\ 33 \end{array}$	$\begin{array}{\|lc} \hline \text { Selenium } \\ 78.96 \\ & \text { Se } \\ 34 \end{array}$	$\begin{aligned} & \hline \text { Bromine } \\ & 79.904 \\ & { }_{35} \mathbf{B r} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Krypton } \\ 83.80 \\ \mathbf{K r} \\ 36 \end{array} \\ & \hline \end{aligned}$
$$	$\begin{array}{\|l} \substack{\text { Strontium } \\ 87.62 \\ \\ 38 \\ \hline \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{array}{\|cc} \hline \text { Yttrium } \\ 88.9059 \\ & \mathbf{Y} \\ 39 & \end{array}$	$\begin{aligned} & \hline \text { Zirconium } \\ & 91.224 \\ & \mathbf{Z r} \\ & 40 \end{aligned}$	Niobium 92.9064 $\mathbf{4 1}$ $\mathbf{4}$ $\mathbf{N b}$	Molybdenum 95.94 42	$\begin{array}{\|c} \hline \text { Technetium } \\ { }_{43} \\ \hline 98) \\ \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Ruthenium } \\ 101.07 \\ \quad \mathbf{R u} \\ 44 \end{array}$	$\begin{array}{\|l} \hline \text { Rhodium } \\ 102.906 \\ { }_{45} \\ \mathbf{R h} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Palladium } \\ 106.42 \\ \\ 46 \\ \hline 40 \\ \hline \end{array}$	Silver 107.868 $\mathbf{A g}$ 47	$\begin{array}{\|l} \hline \text { Cadmium } \\ 112.411 \\ \quad \text { Cd } \\ \hline 48 \end{array}$	$$	$\begin{array}{\|l} \hline \text { Tin } \\ 118.710 \\ \\ 50 \\ 5 n \\ 50 \end{array}$	$\begin{array}{\|l} \hline \text { Antimony } \\ 121.757 \\ \\ 51 \\ \\ 51 \end{array}$	$\begin{array}{\|l} \hline \text { Tellurium } \\ 127.60 \\ \\ \\ 52 \end{array}$	$\begin{array}{\|r} \hline \text { Iodine } \\ 126.905 \\ \\ \\ 53 \end{array}$	Xenon 131.29 $\mathbf{X e}$ 54
$\begin{array}{\|c} \hline \text { Cesium } \\ 132.905 \\ \\ \\ 55 \\ \\ 55 \end{array}$	$\begin{aligned} & \hline \text { Barium } \\ & 137.327 \\ & \\ & \\ & 56 \\ & 5 a \\ & \hline \end{aligned}$	La-Lu	$\begin{aligned} & \hline \text { Hafnium } \\ & { }_{178.49} \\ & { }_{72} \\ & \hline \mathbf{H f} \\ & \hline \end{aligned}$	$\begin{array}{\|cc} \hline \text { Tantalum } \\ 180.948 \\ & \text { Ta } \\ 73 & \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Tungsten } \\ 183.85 \\ \\ 74 \\ \mathbf{W} \end{array}$	$\begin{array}{\|l} \hline \text { Rhenium } \\ 186.207 \\ \\ \\ 75 \end{array}$	$\begin{array}{\|l} \hline \text { Osmium } \\ 190.2 \\ { }_{76} \mathrm{Os} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Iridium } \\ 192.22 \\ \\ \\ \mathbf{7 7} \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Platinum } \\ 195.08 \\ \\ \\ 78 \\ 78 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Gold } \\ { }^{196.967} \\ \\ \\ 79 \end{array}$	$\begin{aligned} & \text { Mercury } \\ & 200.59 \\ & { }_{80} \mathbf{H g} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Thallium } \\ 204.383 \\ & \mathbf{T l} \\ 81 & \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Lead } \\ 207.19 \\ { }_{82} \\ \mathbf{P b} \\ \hline \end{array}$	Bismuth 208.980 83 $8 i$	$\begin{array}{\|l} \begin{array}{l} \text { Polonium } \\ (210) \end{array} \\ { }_{84} \\ \hline \end{array}$	$\begin{aligned} & \text { Astatine } \\ & (210) \\ & { }_{85} \text { At } \\ & \hline \end{aligned}$	$\underbrace{}_{86}$Radon (222) $\mathbf{R n}$
$\begin{array}{\|l} \hline \text { Francium } \\ \left.{ }_{87} 223\right) \\ { }_{87} \mathbf{F r} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Radium } \\ 226.025 \\ { }_{88} \\ \mathbf{R a} \end{array}$	Ac-Lr	$\int_{104} \mathbf{R f}$	$\begin{aligned} & \begin{array}{l} \text { Dubnium } \\ (268) \\ \text { Db } \\ 105 \end{array} \end{aligned}$	$\int_{106} \mathbf{S g}$	$\underbrace{\begin{array}{l} \text { Bohrium } \\ (270) \\ \text { Bh } \end{array}}_{107}$	$\left.\right\|_{108}{ }^{\text {Hassium }} \begin{aligned} & \text { (277) } \\ & \text { Hs } \end{aligned}$	$\begin{aligned} & \text { Meitnerium } \\ & (276) \\ & 109 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Darmstadtium } \\ (281) \\ 110 \\ \text { Ds } \end{array} \\ & \hline 10 \end{aligned}$	${\underset{111}{ }}_{\substack{\text { Roentgenium } \\(280) \\ \mathbf{R g}}}$	${\underset{112}{\text { Copernicium }}}_{\substack{\text { (285) } \\ \mathbf{C n}}}$	${\underset{113}{(284)} \mathbf{N h}}_{\substack{\text { Nihonium } \\(2)}}$	$\|$Flerovium (289) 114 Fl	$\begin{aligned} & \text { Moscovium } \\ & (288) \\ & 115 \end{aligned}$	$\underbrace{}_{116} \mathbf{L V}$	$\begin{aligned} & \text { Tennessine } \\ & { }_{117}^{(294)} \mathbf{T s} \end{aligned}$	$\begin{array}{\|l} \hline \text { Oganesson } \\ (294) \\ \mathbf{O g} \\ 118 \end{array}$
		$$	$\begin{array}{\|l} \hline \text { Cerium } \\ { }^{140.115} \\ \\ 58 \\ \hline \end{array}$	$\begin{aligned} & \text { Praseodymium } \\ & { }_{140.908} \\ & \\ & 59 \end{aligned}$	\int_{60}Neodymium 144.24 $\mathbf{N d}$	$\underbrace{\left(\begin{array}{l} \text { Promethium } \\ (145) \\ P m \end{array}\right.}_{61}$	$\begin{aligned} & \hline \text { Samarium } \\ & 150.36 \\ & \quad \mathbf{S m} \\ & 62 \\ & \hline \end{aligned}$	$$	$$	Terbium 158.925 65	$$	$$	$\begin{array}{\|l\|l} \hline \text { Erbium } \\ 167.26 \\ & \text { Er } \\ 68 & \\ \hline \end{array}$	Thulium 168.934 69 Tm	$\begin{array}{\|l\|l\|} \hline \text { Ytterbium } \\ 173.04 \\ \mathbf{y b} \\ 70 & \mathbf{Y b} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline{ }^{\text {Lutetium }} \\ { }_{71} \quad \mathbf{L u} \\ \hline \end{array}$	
		$\begin{array}{\|l} \hline \text { Actinium } \\ 227.028 \\ \text { Ac } \\ 89 \end{array}$	Thorium 232.038 90	$\begin{array}{\|l} \hline \text { Protactinium } \\ 231.036 \\ \\ 91 \end{array}$	$\begin{array}{\|r} \hline \text { Uranium } \\ 238.029 \\ \\ 92 \end{array}$	$\begin{array}{\|c\|} \hline \text { Neptunium } \\ 237.048 \\ \\ \\ 93 \end{array}$	$\begin{aligned} & \text { Plutonium } \\ & (240) \\ & { }_{94} \mathbf{P u} \\ & \hline 9 \end{aligned}$	${ }_{95}^{\text {Americium }}$(243) Am	${ }_{96} \mathrm{Cm}$			$\begin{aligned} & \begin{array}{l} \text { Einsteinium } \\ { }_{99}^{(252)} \\ \\ \hline \end{array} \quad \text { Es } \end{aligned}$	$\begin{array}{\|l} \begin{array}{l} \text { Fermium } \\ (257) \\ \mathbf{F m} \\ 100 \end{array} \\ \hline \end{array}$	Mendelevium (258) 101		$\int_{103} \mathbf{L r}$	

Metals are in yellow boxes. Nonmetals are in blue boxes. Metalloids are in green boxes.
Elements in white boxes have been made in such small quantities that their bulk properties have not been measured.

The Periodic Table: A Chemical Index

- Terminology used to describe regions of the periodic table:
- Periods
- Groups
- s-block ("alkali metals" and "alkaline earth metals")
- p-block (group 13, group 14, "pnictogens", "chalcogens", "halogens" and "noble gases")
- d-block ("transition metals")
- f-block ("lanthanides" and "actinides")
- Metals (conductors)
- Nonmetals (insulators)
- Metalloids (intrinsic semiconductors)

You are required to memorize the names, symbols and atomic numbers for the first 36 elements.
i.e. hydrogen (H) to krypton (Kr)

Some symbols may be omitted from the periodic table on future tests. You are NOT required to memorize atomic masses.

What is a Metal?

- Most of the elements in the periodic table are metals. How can we recognize if an element is a metal?
- It's opaque and its smooth surfaces reflect light ("metallic luster").
- It's malleable (can be hammered into sheets without breaking).
- It's ductile (can be stretched into wires without breaking).
- It has a high boiling point. (The melting points of metals vary widely - though most have high melting points too.)
- It conducts heat and electricity.
- These properties arise because of the structure of metals. The simplest metals can be considered to behave as an organized arrangement of 'cations' surrounded by a 'sea of electrons':

What is a Metal?

- Metals usually form crystal lattices in which the atoms are closely packed. These lattices are held together by electrostatic attractions between the cations and the electrons.
- So, at the atomic level, metals look similar to some of the pictures shown below:

- These lattices are made up of repeating units called unit cells. All of the unit cells in a lattice are identical and have the same symmetry as the overall lattice. There can be no "gaps" between unit cells and all cells must have the same orientation. ${ }^{7}$

Metal Lattices

- Find the smallest "unit cell" in each of the following pictures:

- The smallest unit cell in a lattice is called the primitive unit cell.
- Note that these are two-dimensional pictures while metals are three-dimensional!

Metal Lattices

- How do these lattices arise? Consider what would happen if you poured marbles into the bottom of a box. How would they naturally arrange themselves? Why?

If you were to add a second layer of marbles, where would they go?

Metal Lattices

- The marbles on the previous page adopted a "closest packing" arrangement that is observed in the structures of many metals. There are two kinds of "closest packing" lattices: cubic closest packed (ccp) and hexagonal closest packed (hcp).
- The difference between these two lattices arises when the third row of atoms is added:

Metal Lattices

- Where's the hexagon in hexagonal closest packing (hcp)?
- Rotate the image from the previous page upward so that we can see the lattice in three-dimensions:

- Note that the layer sequence is red-blue-red-blue (more generally referred to as ABAB)
- Can you find a unit cell smaller than the hexagon shown on the right? Outline a primitive (i.e. smallest) unit cell on each picture ${ }_{1 i}$

Metal Lattices

- Where's the cube in cubic closest packing (ccp)?
- Rotate the image from the previous page upward so that we can see the lattice in three-dimensions:

- Note that the layer sequence is red-blue-yellow-red-blue-yellow (more generally referred to as $A B C A B C$)

- A unit cell contains atoms from four of the layers from the picture on the left. On the unit cell at the left, label which layer each atom comes from (A, B or C).
- In addition to the atom at each corner of the cube, there is also an atom in the center of each face of the cube. For this reason, cubic closest packing (ccp) can also be called face centered cubic (fcc).

Metal Lattices

- Face-centered cubic (fcc) is one of three types of cubic unit cells. The other two are body-centered cubic (bcc) and simple cubic:

Simple cubic

Body-centered cubic

© 2003 Thomson - Brooks/Cole
Note that these pictures include parts of the atoms that are not contained by the unit cell. The unit cell only contains the fraction of each atom that is *inside* the cube!

Metal Lattices

H																			He
Li	Be												B	C			0	F	Ne
Na	Mg												Al	S			S	Cl	Ar
K	Ca	Sc	Ti	V	C	Mr	F	C			u	Zn	Ga	G			Se	Br	Kr
Rb	Sr	Y	Zr	Nb	M	Tc	R				g	Cd	In	S			Te	I	Xe
Cs	Ba	La	Hf	Ta	W	Re	0	I			u	Hg	TI	P		i	Po	At	Rn
Fr	Ra	Ac																	

Simple cubic

Cubic close packing (Face centered cubic)

Body centered cubic

How can we Determine a Lattice's Structure

- Crystalline solids (including metals) can be analyzed by x-ray crystallography, in which an x-ray is passed through a crystal. The crystal acts as a diffraction grating (the x-rays can pass through gaps in the crystal structure but not through the atoms themselves), and analysis of the resulting diffraction pattern allows a chemist to determine the structure of the crystal (elements as well as arrangement of atoms).

