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Transition Metals

 Mercury (Hg) is the only transition metal that is not a solid.
 The transition metals all have valence electrons in a d subshell.
 Like other metals, transition metals form cations not anions.
 We shall see that many transitions cations form beautifully 

coloured compounds (as shown on the previous page).
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Ligands and Co-ordination Complexes

 Co-ordination complexes are compounds in which several 
ligands are co-ordinated to a transition metal cation.  

 A ligand is any substance (neutral or anion) which can act as a 
Lewis base, donating electrons to the transition metal cation 
(which acts as a Lewis acid).  

 If the resulting complex has a charge, it is a complex ion.

 The number of atoms attached to the transition metal is 
referred to as the co-ordination number.  It doesn’t matter 
whether these atoms come from the same molecule/ion or from 
several different ones. 
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Ligands and Co-ordination Complexes

 𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂2 6
2+ is 𝐶𝐶𝐶𝐶2+ with six water molecules as ligands:

 𝑍𝑍𝑍𝑍 𝐶𝐶𝐶𝐶 4
2− is 𝑍𝑍𝑍𝑍2+ with four cyanide ions as ligands:
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Ligands and Co-ordination Complexes

 The ligands around the metal do not all have to be the same!

 A very important co-ordination complex is found in hemoglobin:

This is a cartoon!  
Heme (the porphyrin 
in hemoglogin) has 
chains branching off 
the porphyrin ring.



Ligands and Co-ordination Complexes

 Classifying Ligands
 Ligands co-ordinated to a transition metal though one atom are 

called monodentate (“one-toothed”) ligands.  
 Ligands co-ordinated to a transition metal through two atoms are 

called bidentate (“two-toothed”) ligands.  
 Polydentate ligands can also be called chelating ligands, or 

chelates (“claws”).  Such ligands are able to “grip” a cation by 
co-ordinating to it with many different atoms!  
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Ligands and Co-ordination Complexes

 To make a neutral precipitate, charged co-ordination complexes 
(complex ions) need one or more counterions to balance the 
charge.  This gives a complex salt.

 Some co-ordination complexes and complex salts contain extra 
water molecules which were trapped during crystallization.  
These complexes are also hydrates.  Water of hydration can be 
removed by heating a complex salt in a dry oven.
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Ligands and Co-ordination Complexes

 In the CHEM 2000 lab, you will make the bright green complex 
salt, 𝐾𝐾3 𝐹𝐹𝐹𝐹 𝐶𝐶2𝑂𝑂4 3 � 3𝐻𝐻2𝑂𝑂 containing 𝐹𝐹𝐹𝐹3+.  Break this formula 
into a complex ion, counterion and water of hydration.  Identify 
the ligands and their charge.
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Ligands and Co-ordination Complexes

 If 5.00 grams of 𝐾𝐾3 𝐹𝐹𝐹𝐹 𝐶𝐶2𝑂𝑂4 3 � 3𝐻𝐻2𝑂𝑂 is heated until all of the 
water has evaporated, what mass of solid ought to remain?
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Ligands and Co-ordination Complexes

 A co-ordination complex must contain:
 a transition metal cation
 several ligands.  

 A co-ordination complex may also have:
 counterion(s) (to balance charge) and/or 
 extra water molecules (“water of hydration”)

 Co-ordination complexes can be charged or neutral.  
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Why are Transition Metals Special?

 We have seen that main group metals are somewhat limited in 
what oxidation states they can adopt.  Many transition metals, 
on the other hand, can take on a wide variety of different 
oxidation states.  This distribution is not entirely random, as 
show in the graph below (common oxidation states in dark red): 
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Why are Transition Metals Special?

 Compared to 𝑠𝑠 and 𝑝𝑝 electrons, 𝑑𝑑 electrons can be added or 
removed relatively easily.

 The electron configuration of neutral vanadium is:

 The first two electrons lost from vanadium will be those in the 
4𝑠𝑠 orbital.  After that, electrons are lost from the 3𝑑𝑑 orbitals 
giving the three observed oxidation states:
 vanadium(III)

 vanadium(IV)

 vanadium(V)
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Electronic Structure and Colour

 One of the more fun consequences of these partially filled 𝑑𝑑
subshells is that the co-ordination complexes of transition 
metals are often brightly coloured.  

 The flasks below contain aqueous solutions of nitrate salts.  
Since all nitrates are water-soluble, these solutions contain aqua 
complexes of the transition metal cation: 𝑀𝑀 𝑂𝑂𝑂𝑂2 6

𝑛𝑛+.

Fe3+ Cu2+Ni2+
Co2+

Zn2+
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Electronic Structure and Colour

 Why is the 𝑍𝑍𝑍𝑍2+ complex the only colourless one?
 Consider the electron configurations of the five cations:

 𝐹𝐹𝐹𝐹3+

 𝐶𝐶𝐶𝐶2+

 𝑁𝑁𝑁𝑁2+

 𝐶𝐶𝐶𝐶2+

 𝑍𝑍𝑍𝑍2+
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Electronic Structure and Colour

 Where does the variety in colour come from?
 Many co-ordination complexes have octahedral geometry.  This 

means that two of the 𝑑𝑑 orbitals on the transition metal point 
directly at ligands while the other three do not:

 A simple electrostatic model, called the crystal field theory, 
assumes that there will be a certain degree of electron-electron 
repulsion between the electron pair a ligand donates and any 
electrons already in the metal’s 𝑑𝑑 orbitals.  This repulsion is felt 
most strongly by electrons in the 𝑑𝑑 orbitals pointing at the ligands. 
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Electronic Structure and Colour

 Thus, in an octahedral complex, the 𝑑𝑑𝑧𝑧2 and 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbitals are 
pushed to higher energy than the 𝑑𝑑𝑥𝑥𝑥𝑥, 𝑑𝑑𝑥𝑥𝑥𝑥 and 𝑑𝑑𝑦𝑦𝑦𝑦 orbitals.  

 This separation in energy is referred to as crystal field splitting, 
and the crystal field splitting energy is ∆𝑜𝑜 (‘o’ is for ‘octahedral’):



Electronic Structure and Colour

 In co-ordination complexes with crystal field splitting, there are 
two ways to distribute 𝑑𝑑 electrons.  Which one is favoured
depends on the size of ∆𝑜𝑜 which, in turn depends on where the 
ligands fall on the spectrochemical series:

CN- > en > NH3 > EDTA4- > H2O > ox2- > OH- > F- > Cl- > Br- > I-

strong field weak field

17



Electronic Structure and Colour

 Strong field ligands bind tightly to the metal, so there is a strong 
interaction between the ligand and the 𝑑𝑑 electrons of the metal, 
leading to a large ∆𝑜𝑜.

 Weak field ligands have weaker interaction with the 𝑑𝑑 electrons of 
the metal, leading to a small ∆𝑜𝑜.
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Electronic Structure and Colour

 When ∆𝑜𝑜 is small (because we are using weak field ligands), a 
high spin distribution of electrons is observed.  This maximizes the 
alignment of spin of the d electrons.  

 When ∆𝑜𝑜 is large (because we are using strong field ligands), a 
low spin distribution of electrons is observed.  This means that the 
lowest energy d orbitals are completely filled before any electrons 
are added to the higher energy orbitals in the 𝑑𝑑 subshell.  
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Electronic Structure and Colour

 How does this make for coloured solutions?
 Recall that photons are emitted when electrons drop from a higher 

energy orbital to a lower energy orbital.  (see Atomic Line Spectra)
Similarly, the electrons get to the higher energy orbital by 
absorbing photons of light.

 Electrons in the lower energy 𝑑𝑑 orbitals can absorb photons and be 
excited into the higher energy 𝑑𝑑 orbitals.  Since ∆𝑜𝑜 corresponds to 
the energy of light in the visible region (and there is more than one 
way to absorb a photon), some wavelengths of visible light are 
absorbed.  The wavelengths that are not absorbed give the 
colour of solution.

 To see how this works, watch this cute (if very old fashioned) 
video: Eureka 30 - Radiation Spectrum.mov - YouTube

https://www.youtube.com/watch?v=XrNGWcdZ6GY
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Electronic Structure and Colour
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Electronic Structure and Colour

 To absorb coloured light, the transition metal needs to have 
electrons in at least one of the low-energy 𝑑𝑑 orbitals and an 
empty space in at least one of the high-energy 𝑑𝑑 orbitals.  

 Which of these two requirements does 𝑍𝑍𝑍𝑍2+ lack (making it 
colourless)?



Electronic Structure and Colour

 Different ligands provide different amounts of crystal field 
splitting. 𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂2 6

3+ and 𝐹𝐹𝐹𝐹 𝐶𝐶2𝑂𝑂4 3
3− are both complexes 

of 𝐹𝐹𝐹𝐹3+ but 𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂2 6
3+ is extremely pale purple* (frequently 

appearing colourless) while 𝐹𝐹𝐹𝐹 𝐶𝐶2𝑂𝑂4 3
3− is green.  

 What colour of light is each compound most likely absorbing?
 Which of these two ligands is splitting the 𝑑𝑑 orbitals of 𝐹𝐹𝐹𝐹3+ more?  

(i.e. which complex has a larger ∆𝑜𝑜) 

* The orange colour you’re used to seeing for aqueous solutions of 𝐹𝐹𝐹𝐹3+ salts is due to 𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂2 5𝑂𝑂𝑂𝑂 2+,
the conjugate base of 𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂2 6

3+.  We’ve seen previously that complexes like 𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂2 6
3+ are acidic. 
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Isomers

 Even a very small change in the structure of a complex ion can 
change its colour drastically.
 Draw two different structures for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 𝑁𝑁𝑁𝑁3 4

+.

 One of these compounds is purple while one is green!  The purple 
one is referred to as cis- 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 𝑁𝑁𝑁𝑁3 4

+ while the green one is 
trans- 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 𝑁𝑁𝑁𝑁3 4

+

 These compounds are isomers. 
They have the same molecular
formula but are not the same
substance.  No matter how 
much you rotate either, you 
cannot superimpose them.



25

Isomers

 Draw two isomers of 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶2 𝑁𝑁𝑁𝑁3 2 , a square planar complex.

The cis isomer is an anti-cancer drug while the trans isomer is toxic!
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Isomers

 Draw two isomers of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 𝑁𝑁𝑁𝑁3 3 , an octahedral complex.
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