Practice Test Questions 1
 Math and Stoichiometry Review

1. $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

How many liters are in $1 \mathrm{~m}^{3}$?
2. A 125 mL flask contains $75 \mathrm{kPa} \mathrm{Cl}_{2}$ at $22{ }^{\circ} \mathrm{C}$.
(a) How many moles of Cl_{2} are in the flask?
(b) What mass of Cl_{2} is in the flask?
3. The density of pure ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is $0.789 \mathrm{~g} / \mathrm{mL}$ at room temperature. Calculate the number of hydrogen atoms in 1.00 L of ethanol.
4. If 6.25 grams of calcium metal are added to 2 liters of water, what mass of hydrogen gas is produced?

$$
\mathrm{Ca}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(s)+\mathrm{H}_{2}(g)
$$

5. Club soda is an aqueous solution of carbon dioxide. A sample of club soda is titrated with $0.04202 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ according to the reaction equation below:

$$
\mathrm{CO}_{2}(a q)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(a q)
$$

If it takes 32.14 mL of $0.04202 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ to react with a 25.00 mL sample of club soda, what is the concentration of CO_{2} in club soda (in g / L)?
6. A piece of magnesium with a mass of 185 mg is dropped into a beaker containing 75 mL of $1.25 \mathrm{M} \mathrm{HCl}_{\text {(aq) }}$:

$$
\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

Once the reaction is complete, what is the concentration of $\mathrm{HCl}_{(\mathrm{aq})}$ remaining in the beaker? Assume that the volume of solution does not change.

