The Laws of Thermodynamics in Review

1. The internal energy, \mathbf{U}, of an isolated system is constant. There are only two ways to change internal energy - heat and work.

$$
\Delta U=q+w
$$

Internal energy (U): total energy in the system:

> chemical bonds intermolecular forces motion (kinetic energy)
2. The entropy of the universe increases in any spontaneous process.

$$
\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}
$$

3. The entropy of a perfect crystal approaches zero as the temperature approaches absolute zero.

$1^{\text {st }}$ Law: Heat and Work in Review

Heat and work are path functions (not state functions).
By definition, Heat at a constant pressure is called Enthalpy.

$$
q=\Delta H
$$

Ex) Imagine a reaction done in a balloon. The volume of the balloon may change over the course of the reaction.
i) If the balloon shrinks, work has been done on the system.
ii) If the balloon expands, work has been done by the system.

The amount of work done on the system depends on \mathbf{P} and the change in \mathbf{V}.
At constant pressure:

$$
w=-P \Delta V
$$

$1^{\text {st }}$ Law: Heat and Work

Recalling that:

$$
\Delta U=q+w
$$

and that:

$$
q=\Delta H
$$

At constant pressure, we can relate enthalpy and internal energy:

$$
q=\Delta U-w
$$

Therefore, enthalpy under constant pressure is:

$$
\Delta H=\Delta U+P \Delta V
$$

2nd Law: Gibbs Free Energy

Recall: at constant T, the change in entropy is:

Also recall that at constant P:

Hence at constant \mathbf{P} and \mathbf{T} :

$$
\Delta S_{s y s t e m}=\frac{\Delta H_{s y s t e m}}{T}
$$

The heat absorbed by the system will be the same as the heat released by the surroundings, hence:

$$
\Delta S=\frac{q_{r e v}}{T}
$$

$$
q_{\text {system }}=\Delta H_{\text {system }}
$$

$$
\Delta S_{\text {surroundings }}=-\frac{\Delta H_{\text {system }}}{T}
$$

$2^{\text {nd }}$ Law: Gibbs Free Energy

Recall that: $\quad \Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}$

Therefore:
$\Delta S_{\text {universe }}=\Delta S_{\text {system }}-\frac{\Delta H_{\text {system }}}{T}$

Furthermore: $\quad-T \Delta S_{\text {universe }}=-T \Delta S_{\text {system }}+\Delta H_{\text {syssem }}$

Which means that for any spontaneous reaction

$$
-\mathrm{T} \Delta \mathrm{~S}_{\text {universe }}<0 \text { (negative). }
$$

$2^{\text {nd }}$ Law: Gibbs Free Energy

$-T \Delta S_{\text {universe }}$ is defined in terms of the system only, and is used to define a new term:

The Gibbs free energy (G), as:

$$
G=H-T S
$$

i) At constant T and P,

$$
\Delta G=\Delta H-T \Delta S
$$

since ΔH is only meaningful at constant pressure.
ii) For any spontaneous reaction, $\Delta G<0$.
iii) Gibbs free energy is a state function.

Gibbs Free Energy and the Standard State

Changes in Gibbs free energy are determined by reaction conditions.
Hence free energy values are always made in reference to standard states.

Standard temperature and pressure (STP) are defined as:
i) $\mathrm{T}=25^{\circ} \mathrm{C}$
ii) $\mathrm{P}=1 \mathrm{bar}(100 \mathrm{kPa})$

Standard states are defined as:
i) A solid is in the standard state if it is at STP.
ii) A liquid is in the standard state if it is at STP.
iii) A gas is in the standard state if it is at STP and behaves ideally.
iv) A solution is in the standard state if it is has one solute with a concentration of $1 \mathrm{~mol} / \mathrm{L}$, is at STP and behaves ideally.

Note: a liquid is not the same as a solution.

Gibbs Free Energy and the Standard State

Standard molar Gibbs free energies of formation ($\Delta G_{f}{ }^{\circ}$) are tabulated alongside $\Delta H_{f}{ }^{\circ}$ and ΔS°.
$\Delta \mathbf{G}_{\mathbf{f}}{ }^{\circ}$: when $\mathbf{1}$ mole of a compound is made from pure elements in their standard states.
e.g.

$$
\begin{aligned}
& \mathrm{Br}_{2(\mathrm{l})} \rightarrow \mathrm{Br}_{2(\mathrm{~g})} \quad \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{Br}_{2(\mathrm{~g})}\right)=82.40 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{Na}_{(\mathrm{s})}+\frac{1}{2} \mathrm{Br}_{2(\mathrm{l})} \rightarrow \mathrm{NaBr}_{(\mathrm{s})} \quad \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{NaBr}_{(\mathrm{s})}\right)=-349.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

Note: If a substance is a pure element in its standard state, this means that:

$$
\Delta \mathbf{G}_{\mathrm{f}}^{\circ}=\mathbf{0} .
$$

Gibbs Free Energy and Predicting Spontaneity

As the Gibbs free energy is a state function, it is used to calculate the free energy change for any reaction $\left(\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}\right)$ under standard state conditions.
e.g.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{SO}_{3(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=? ? ? \\
\Delta_{f} G^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(1)}\right)=-237.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta_{f} G^{\circ}\left(\mathrm{SO}_{3(\mathrm{~g})}\right)=-371.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta_{f} G^{\circ}\left(\mathrm{H}_{2} \mathrm{SO}_{4(a q)}\right)=-744.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{gathered}
$$

$-136.3 \mathrm{~kJ} / \mathrm{mol}$

Gibbs Free Energy and Predicting Spontaneity

$$
\Delta_{r} G^{\circ}=\sum \Delta_{f} G^{\circ}(\text { products })-\sum \Delta_{f} G^{\circ}(\text { reactants })
$$

Analogous to Hess's Law !!

Note: The state of matter is important.
i) Only one allotrope of any element can have $\Delta_{f} G^{\circ}=0$.

Most often the one that is most stable under STP.
ex) graphite, $\mathrm{O}_{2(\mathrm{~g})}$, etc.
ii) As ions cannot exist in isolation hence without counterions;

Therefore the standard state $\mathbf{H}^{+}{ }_{(\text {aq })}(1 \mathrm{M}$ at STP) is used as the reference for ions.

$$
\text { ie. } \quad \Delta_{\mathbf{f}} \mathbf{G}^{\circ}\left(\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right)=0
$$

Gibbs Free Energy and Predicting Spontaneity

A well known spontaneous reaction occurs when potassium metal is added to water.
What is the free energy change for this reaction under standard conditions?
e.g.

$$
\begin{gathered}
\mathrm{K}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}+\frac{1}{2} \mathrm{H}_{2(\mathrm{~g})} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=? ? ? \\
\Delta_{f} G^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(1)}\right)=-237.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta_{f} G^{\circ}\left(K_{(a q)}^{+}\right)=-283.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta_{f} G^{\circ}\left(\mathrm{OH}_{(a q)}^{-}\right)=-157.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
-203.4 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Gibbs Free Energy and Predicting Spontaneity

A reaction between H_{2} and N_{2} doesn't readily proceed to make NH_{3}.

What is the free energy change for this reaction under standard conditions?

$$
\Delta_{f} G^{\circ}\left(N H_{3(g)}\right)=-16.45 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

The free energy change tells us that this process is favored thermodynamically?

It does not tell us if there is a direct path from reactants to products without a larger positive free energy in between.

It does therefore not predict whether the reaction will take place under standard conditions.

Gibbs Free Energy and Activity

The Haber-Bosch process isn't performed under standard conditions so this free energy value doesn't apply in this case.

Reaction conditions: $450^{\circ} \mathrm{C}$, 100 atm, catalyst: magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

Frequently reactions are run under nonstandard conditions.

Under nonstandard conditions we consider the activity (a) of the substances involved.

Activity is a measure of a substance's deviation from the standard state:
i) Any substance in the standard state will have $\mathbf{a}=\mathbf{1}$.

Recall: that the standard state requires that gases and solutes behave Ideally.
ii) Activities are dimensionless (i.e. they have no units.)

Gibbs Free Energy and Activity

For ideal substances, activity is relatively straightforward:
i) Pure solids have $a=1$
ii) Ideal gases have $a=P / P^{\circ}$ where $\mathrm{P}^{\circ}=1$ bar
iii) Ideal solutes have $a=c / c^{\circ}$ where $c^{\circ}=1 \mathrm{~mol} / \mathrm{L}$
iv) Ideal solvents have $a=X$ where X is the mole fraction of solvent molecules.

For nonideal substances, activity must be modified by an activity coefficient (γ):
i) Nonideal solutes have $a=\gamma \mathrm{c} / \mathrm{c}^{\circ}$ where $\mathrm{C}^{\circ}=1 \mathrm{~mol} / \mathrm{L}$
ii) Activity coefficients, γ, are concentration-dependent as they account for such nonideal behaviour arising from intermolecular forces between different particles of solute.

Thus, the activity coefficient will tend towards $\underline{\underline{1}}$ with dilution.

Gibbs Free Energy \& Nonstandard Conditions

To calculate the $\Delta \mathrm{G}^{\circ}$ of a reaction under nonstandard conditions:
Use the free energy under standard conditions and the deviation from the standard state conditions:

$$
\Delta_{r} G_{m}=\Delta_{r} G_{m}^{o}+R T \ln Q
$$

$\Delta_{r} \mathbf{G}_{\mathbf{m}}$ is the molar Gibbs free energy change under the given conditions,
\mathbf{R} is the ideal gas constant, \mathbf{T} is the given temperature (in K) and
\mathbf{Q} is the reaction quotient:

$$
Q=\frac{\text { product of activities of products }}{\text { product of activities of reactants }}
$$

There is a similarity between the formula for \mathbf{Q} and the formula for \mathbf{K}.
\mathbf{K} describes the system at equilibrium only.

Gibbs Free Energy \& Nonstandard Conditions

Calculate the molar Gibbs free energy change for the rusting of iron under atmospheric conditions.

$$
\begin{aligned}
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{Fe}_{2} O_{3(s)}\right)=-742.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{P}_{\mathrm{O}_{2}}=0.21 \mathrm{bar} \\
& \mathrm{~T}=25^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{Q}=10.39$
$\Delta \mathrm{G}=-736.4 \mathrm{~kJ} / \mathrm{mol}$

Gibbs Free Energy \& Nonstandard Conditions

Calculate the molar Gibbs free energy change for dissolving carbon dioxide in a soft drink under atmospheric conditions.

$$
\begin{aligned}
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)=-394.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(I)}\right)=-237.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{H}_{2} \mathrm{CO}_{3(a q)}\right)=-623.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{P}_{\mathrm{CO}_{2}}=0.038 \mathrm{bar} \\
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{M}} \\
& {[\mathrm{sugar}]=0.6 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=55.33 \mathrm{M}} \\
& \mathrm{~T}=25^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{Q}=2.66$
$\Delta \mathrm{G}=10.8 \mathrm{~kJ} / \mathrm{mol}$

Gibbs Free Energy \& Nonstandard Conditions

Repeat the calculation for dissolving carbon dioxide in a soft drink with a higher pressure for carbon dioxide (5.0 bar).

$$
\begin{aligned}
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)=-394.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right)=-237.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{H}_{2} \mathrm{CO}_{3(a \mathrm{aq})}\right)=-623.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{P}_{\mathrm{co}_{2}}=5.0 \mathrm{bar} \\
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=0.1 \mathrm{M}} \\
& {\left[\mathrm{sugar}^{2}\right]=0.6 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=55.33 \mathrm{M}} \\
& \mathrm{~T}=25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}=0.0202 \\
& \Delta \mathrm{G}=-1.26 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Free Energy Change and Equilibrium

Recall: The free energy change for a reaction under any conditions ($\Delta_{r} G$) can be calculated from the free energy change of the same reaction under standard conditions ($\Delta_{\mathrm{r}} \mathrm{G}^{0}$):

$$
\Delta_{r} G_{m}=\Delta_{r} G_{m}^{o}+R T \ln Q
$$

where \mathbf{Q} is the reaction quotient:

$$
Q=\frac{\text { product of activities of products }}{\text { product of activities of reactants }}
$$

We also know that:
i) The forward reaction is spontaneous if $\Delta_{\mathrm{r}} \mathrm{G}<0$.
ii) The reverse reaction is spontaneous if $\Delta_{\mathrm{r}} \mathrm{G}>0$.

What if $\Delta_{\mathrm{r}} \mathbf{G}=\mathbf{0}$?

Free Energy Change and Equilibrium

When $\Delta_{r} G=0$, we can say that:

$$
\Delta_{r} G_{m}=\Delta_{r} G_{m}^{o}+R T \ln Q=0
$$

Which rearranges to give:

$$
\Delta_{r} G_{m}^{o}=-R T \ln Q
$$

The forward and reverse reactions are in balance, i.e. at equilibrium!

Therefore:

$$
Q=K
$$

Hence:

$$
\Delta_{r} G_{m}^{o}=-R T \ln K
$$

Free Energy Change and Equilibrium

I) If we know the equilibium constant for a reaction, we can calculate its standard molar free energy change:

$$
\Delta_{\mathrm{r}} \mathrm{G}_{\mathrm{m}}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{~K}
$$

II) If we know the standard molar free energy change for a reaction, we can therefore calculate its equilibrium constant:

$$
K=e^{\frac{-\Delta_{r} G_{m}^{o}}{R T}}
$$

Note: these equations refer to $\Delta_{r} G^{o}$ (standard conditions)
NOT
to $\Delta_{r} G$ (which is ZERO at equilibrium!)

Q vs. K

Consider a very generic equilibrium reaction:

$$
A \Leftrightarrow B
$$

i) When does $\mathbf{Q}=\mathbf{K}$?

$$
\text { at equilibrium } \mathbf{K}=\mathbf{Q}=\mathbf{a}_{\mathbf{B}} / \mathbf{a}_{\mathbf{A}}
$$

ii) When is $\mathbf{Q}<\mathbf{K}$?

When there is excess \mathbf{A} or a depletion of \mathbf{B} :

$$
\text { w.r.t equilibrium } \mathrm{a}_{\mathrm{A}}>\mathrm{a}_{\mathrm{A}}(\mathrm{eq}) \text { or } \mathrm{a}_{\mathrm{B}}<\mathrm{a}_{\mathrm{B}}(\mathrm{eq})=>\mathrm{Q}<\mathrm{K}
$$

Reaction proceeds forward
iii) When is $Q>K$?

When there is excess \mathbf{B} or a depletion of \mathbf{A}
w.r.t equilibrium $a_{A}<a_{A}(e q)$ or $a_{B}>a_{B}(e q)=>Q>K$

Free Energy Change and Equilibrium

Consider the dimerization of NO_{2} :
$2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
Calculate the equilibrium constant for this reaction at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{NO}_{2(\mathrm{~g})}\right)=51.31 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta_{\mathrm{f}} G^{\circ}\left(\mathrm{N}_{2} O_{4(\mathrm{~g})}\right)=97.89 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

$K=6.74$

Free Energy Change and Equilibrium

Is the dimerization of NO_{2} spontaneous at $25^{\circ} \mathrm{C}$ if:
the partial pressure of NO_{2} is 0.4 bar
and the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 1.8 bar?

$$
Q=11.25
$$

Free Energy Change and Equilibrium: Acids

The acid ionization constant, K_{a}, is the equilibrium constant for the reaction in which an acid ionizes.
e.g.

$$
\mathrm{HF}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{F}_{(\mathrm{aq})}^{-} \quad \mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}
$$

$\mathrm{pK}_{\mathbf{a}}$ is a measure of $\boldsymbol{s t r e n g t h}$ of an acid:

1) An acid with a low pK_{a} is stronger than an acid with a high pK_{a}.
2) The pK_{a} value for an acid comes from its acid ionization constant:

$$
p K_{a}=-\log K_{a}
$$

(Even a big K_{a} value is pretty small. K_{a} values range from about 10^{-50} to 10^{10}.)

Free Energy Change and Equilibrium: Acids

1) Calculate the standard molar free energy of formation for $\mathrm{HF}_{(\mathrm{aq})}$.

$$
\begin{gathered}
\mathrm{HF}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}_{(\mathrm{aq})}^{-} \quad \mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4} \\
\Delta_{\mathrm{f}} G^{\circ}\left(H_{(a q)}^{+}\right)=0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{\mathrm{r}}^{\circ}=18.15 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{\mathrm{f}} G^{\circ}\left(F_{(\mathrm{aq})}^{-}\right)=-278.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{HF}_{(\mathrm{aq})}\right)=-296.95 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

2) Calculate the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ at 298 K in a 1.00 M solution of HF .

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=0.0254} \\
& \mathrm{pH}=1.60
\end{aligned}
$$

