## Vapour Pressure of Pure Substances

When you leave wet dishes overnight they will usually be dry the next morning.
The water has evaporated - even though your kitchen was $70-80^{\circ} \mathrm{C}$ below the boiling point of the water. How is this possible?


At any given $T$, some molecules will have enough energy to escape the intermolecular forces holding them in the liquid phase.

## Vapour Pressure of Pure Substances

Heating a liquid increases the rate of vaporization by increasing the proportion of molecules having sufficient energy to leave the liquid state.

Since heating increases the extent of vaporization, this is an $\qquad$ process with a $\qquad$ enthalpy.

This is consistent with rapid vaporization cooling the remaining liquid.

The molecules at the surface with sufficient energy evaporate, thereby reducing the average kinetic energy of those remaining thus reducing $\mathbf{T}$.

In a sealed container at equilibrium, $\mathbf{P}$ exerted by gas is the vapour pressure.
Vapour pressure is not exclusive to liquids; many solids have measurable $\mathbf{P}_{\text {vap }}$.
Iodine, $I_{2}$
e.g. dry ice $\left(\mathrm{CO}_{2(\mathrm{~s})}\right), \mathrm{I}_{2(\mathrm{~s})}$

## Vapour Pressure of Pure Substances

A liquid boils when:

$$
\mathbf{P}_{\text {vap }}=\text { Atmospheric pressure }
$$

The pressure exerted by gas = the atmospheric pressure exerted on the liquid's surface,
boiling point is therefore pressure-dependent.


Reducing the ambient $\mathbf{P}$ will decrease a liquid's boiling point,
Increasing the ambient $\mathbf{P}$ will increase a the boiling point.

To allow comparisons of the $\mathbf{T}$ at which $\mathbf{P}_{\text {vap }}$ of a liquid is equal to $\qquad$ is used to define its normal boiling point.

Liquids with a high $\mathbf{P}_{\text {vap }}$ thus having low boiling points are referred to as $\qquad$ -'

## Phase Diagrams

$\mathbf{P}_{\text {vap }}$ has an exponential dependence on $\mathbf{T}$.
$\mathbf{P}_{\text {vap }}$ can be read off directly from the $\mathbf{P}_{\text {vap }}$ curve or calculated from the free energy.

$$
\begin{aligned}
& L i q \Leftrightarrow \text { gas } \quad \mathbf{K}=a_{\text {gas }} / a_{\text {liq }}=P_{\text {gas }} \\
& \mathbf{K}=\exp (-\Delta G / R T) \\
& \mathbf{P}_{\text {gas }}=\exp (-\Delta G / R T)
\end{aligned}
$$

e.g. The $\Delta \mathbf{G}^{\mathbf{0}}$ for the evaporation of water is $+8.5 \mathrm{~kJ} / \mathrm{mol}$.

This curve is part of a phase diagram, a figure which shows the most thermodynamically stable phases under different conditions.

For pure substances, temperature-pressure phase diagrams are common.

## Phase Diagrams

A complete temperature-pressure phase diagram is shown below:


Each curve shows the conditions under which two phases are at equilibrium.
The triple point shows the conditions under which all three phases are at equilibrium!
At P's and T's below the triple point, the liquid phase does not form and the substance sublimes from gas to solid (or solid to gas).

## Phase Diagrams



A solid heated at a constant $\mathbf{P}$ will either:
Undergo $\qquad$ to a liquid,
or
Undergo $\qquad$ to a gas.

Which occurs depends on the $\qquad$ .

## Phase Diagrams



A gas at constant $\mathbf{T}$ will undergo $\qquad$ to either a liquid or a solid.

Which occurs depends on the $\qquad$ .

This is a normal temperature-pressure phase diagram:
Where the line between the solid and liquid phases has a positive slope.
What does that indicate about the substance?

## Phase Diagrams



The temperature-pressure phase diagram for water is not normal:
where the line between the solid and liquid phases has a negative slope.

What does that indicate about water?

## Vapour Pressure of Solutions

The surface of the pure water consists entirely of water molecules, a fraction of which have enough energy to evaporate.

The surface of the salt water consists primarily of water molecules but also some ions from the salt.

The same fraction of water molecules has enough energy to evaporate but, since fewer water molecules are on the surface, fewer evaporate.

Essentially, the salt ions block access to the surface.
As a result the salt water has a lower $\mathbf{P}_{\text {vap }}$ than the pure water.
Thus it will need to be heated to a higher $\mathbf{T}$ to raise its $\mathbf{P}_{\text {vap }}$ to equal to atmospheric $P$.

Hence the boiling point of salt water is higher than that of pure water.



## Vapour Pressure of Solutions

Raoult's law defines the vapour pressure of a solvent (A):

$$
P_{A}=X_{A} P_{A}{ }^{\circ}
$$

$\mathbf{P}_{\mathbf{A}}$ is the vapour pressure of the solvent (in solution)
$\mathbf{P}_{\mathbf{A}}{ }^{\mathbf{o}}$ is the vapour pressure of the solvent (as a pure liquid) $\mathbf{X}_{\mathbf{A}}$ is the mole fraction of the solvent molecules.
n.b. Raoult's law only calculates the vapour pressure of the solvent.

If a solute is volatile, it will have a vapour pressure too:

$$
[A]=k_{H} P_{A}
$$

[A] is the concentration of the volatile solute $\mathbf{A}$, $\mathbf{P}_{\mathbf{A}}$ is the vapour pressure of the volatile solute and $\mathbf{K}_{\mathbf{H}}$ is the Henry's law constant (solute-specific).

This is Henry's law. It is usually presented when discussing solubility of gases.

## Equilibrium Constant and Temperature

An equilibrium constant $(K)$ is only constant with constant temperature. Why?

The enthalpy and entropy change for a reaction vary slowly with temperature;
however, the free energy change is strongly temperature-dependent:

At any temperature:

$$
\Delta G=\Delta H-T \Delta S
$$

Hence, as $\Delta \mathbf{G}$ changes with $\mathrm{T}, \mathbf{K}$ changes accordingly

$$
\Delta_{r} G_{m}^{o}(T)=-R T \ln [K(T)]
$$

## Equilibrium Constant and Temperature

For a reaction at temperatures $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$, the following can be stated:

$$
\begin{gathered}
\Delta_{r} G_{1}^{o}\left(T_{1}\right)=\Delta_{r} H^{o}-T_{1} \Delta_{r} S^{o}=-R T_{1} \ln \left[K_{1}\right] \\
\text { and } \\
\Delta_{r} G_{2}^{o}\left(T_{2}\right)=\Delta_{r} H^{o}-T_{2} \Delta_{r} S^{o}=-R T_{2} \ln \left[K_{2}\right]
\end{gathered}
$$

Assuming that $\Delta \mathbf{H}$ and $\Delta \mathbf{S}$ don't change significantly over the given temperature range:

$$
\frac{\Delta_{r} H^{o}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)=\ln K_{2}-\ln K_{1}
$$

or:

$$
\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{o}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

## Equilibrium Constant and Temperature

$\mathbf{K}_{\mathbf{w}}=10^{-14}$ under standard conditions :

$$
\begin{aligned}
\mathrm{a}_{\mathrm{H}+}{ }^{*} \mathrm{a}_{\mathrm{OH}-}= & 10^{-14} \\
& \text { since } \mathrm{a}_{\mathrm{H}+}=\mathrm{a}_{\mathrm{OH}-}
\end{aligned}
$$

$$
\text { implies } \mathrm{a}_{\mathrm{H}+}=10^{-7}
$$

Hence neutral water have pH 7 at $25^{\circ} \mathrm{C}$.

What is $\mathrm{K}_{\mathrm{w}}$ at $37.00^{\circ} \mathrm{C}$ ?

$$
\begin{aligned}
\Delta_{\mathrm{f}} H^{\circ}\left(O H_{(a q)}^{-}\right) & =-230.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} O_{(l)}\right) & =-285.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

$$
\Delta \mathrm{H}_{\mathrm{r}}{ }^{\mathrm{o}}=55.8 \mathrm{~kJ} / \mathrm{mol}
$$

What does this tell us about the pH of water at $37.00^{\circ} \mathrm{C}$ ?

$$
p H=-\log \left(a_{H^{+}}\right)
$$

$$
K w=2.38 * 10^{-14}
$$

$$
\mathrm{pH}=6.81
$$

## Equilibrium Constant and Temperature

The atmospheric pressure in Lethbridge is typically $\mathbf{9 0} \mathbf{~ k P a}$.
What is the boiling point of water on a typical day in Lethbridge?
At sea level the bp of water is $100^{\circ} \mathrm{C}$ and the atmospheric pressure is 101.3 kPa .
Therefore:

$$
\begin{array}{ll}
\mathrm{P}_{1}=101.3 \mathrm{kPa} & \mathrm{~T}_{1}=373.15 \mathrm{~K} \\
\mathrm{P}_{2}=90 \mathrm{kPa} & \mathrm{~T}_{2}=?
\end{array}
$$

$$
\Delta_{\text {vap }} H_{m}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=40.66 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Also

$$
\mathrm{K}=\mathrm{a}\left[\mathrm{H}_{2} \mathrm{O}_{(\text {vap })}\right] / \mathrm{a}\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{liq})}\right]=\left\{\mathrm{P}\left[\mathrm{H}_{2} \mathrm{O}_{\text {(vap) }}\right) / \mathrm{P}_{\mathrm{stp}}\right\} / 1=\mathrm{P}\left[\mathrm{H}_{2} \mathrm{O}_{\text {(vap) }}\right] \quad \text { No units }
$$

Therefore:

$$
\mathrm{K}_{1}=101.3 \text { and } \mathrm{K}_{2}=90
$$

$96.75^{\circ} \mathrm{C}$

## Equilibrium Constant and Temp. (Solutions)

Saturated salt solutions which freeze below $0^{\circ} \mathrm{C}$.
Calculate the freezing point of $\mathrm{NaCl}_{(\mathrm{aq)}}$ prepared by dissolving 6 mol NaCl in $1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$.

The freezing point of pure water is $0^{\circ} \mathrm{C}$
Also:

$$
\begin{gathered}
\mathrm{K}=\mathrm{a}\left[\mathrm{H}_{2} \mathrm{O}_{(\text {solid) })}\right] / \mathrm{a}\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{liqq})}\right]=1 / \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right) \\
\mathrm{T}_{1}=273.15 \mathrm{~K} \quad \mathrm{~K}_{1}=1 / \mathrm{X}_{1}=1 / 1=1 \quad \text { (pure water) } \\
\mathrm{X}_{2}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O} /\left(\mathrm{mol} \mathrm{H}_{2} \mathrm{O}+\mathrm{mol} \mathrm{NaCl}\right)=55.6 \mathrm{~mol} /(55.6+6 \mathrm{~mol})=0.902
\end{gathered}
$$

Therefore:

$$
\mathrm{T}_{2}=? \quad \mathrm{~K}_{2}=1 / \mathrm{K}_{2}=1 / 0.902=1.108
$$

$\Delta_{\text {fus }} H_{m}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.007 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ Exothermic!!! $-10.19{ }^{\circ} \mathrm{C}$

