Vapour Pressure of Pure Substances

When you leave **wet dishes** overnight they will usually be **dry** the next morning.

The water has evaporated – even though your kitchen was 70-80°C **below** the **boiling point** of the water. **How is this possible?**

At **any** given T, **some** molecules will have **enough** energy to escape the **intermolecular forces** holding them in the liquid phase.

Vapour Pressure of Pure Substances

Heating a liquid **increases** the rate of **vaporization** by increasing the proportion of molecules having sufficient energy to leave the liquid state.

Since heating **increases** the extent of vaporization, this is an _____ process with a _____ **enthalpy**.

This is consistent with rapid vaporization **cooling** the remaining liquid.

The molecules at the **surface** with sufficient energy evaporate, thereby **reducing** the **average kinetic energy** of those remaining thus **reducing T**.

In a **sealed** container at equilibrium, **P** exerted by gas is the **vapour pressure**. **Vapour pressure** is **not exclusive** to liquids; many **solids** have measurable **P**_{vap}.

e.g. dry ice $(CO_{2(s)})$, $I_{2(s)}$

Vapour Pressure of Pure Substances

A liquid **boils** when:

P_{vap} = **Atmospheric** pressure

The **pressure** exerted by **gas** = the **atmospheric pressure** exerted on the liquid's surface,

boiling point is therefore pressure-dependent.

Reducing the ambient P will decrease a liquid's boiling point,

Increasing the ambient **P** will **increase** a the boiling point.

To allow comparisons of the **T** at which P_{vap} of a liquid is equal to ______ is used to define its **normal boiling point**.

Liquids with a high P_{vap} thus having low boiling points are referred to as _____

 P_{vap} has an exponential dependence on **T**.

 P_{vap} can be read off directly from the P_{vap} curve or calculated from the free energy.

Liq
$$\Leftrightarrow$$
 gas $\mathbf{K} = a_{gas}/a_{liq} = P_{gas}$

 $\mathbf{K} = \exp(-\Delta G/RT)$

 $\mathbf{P_{gas}} = \exp(-\Delta G/RT)$

e.g. The Δ **G**^o for the evaporation of water is +8.5 kJ/mol.

This curve is part of a **phase diagram**, a figure which shows the most thermodynamically stable phases under different conditions.

For pure substances, temperature-pressure phase diagrams are common.

A complete **temperature-pressure** phase diagram is shown below:

Each curve shows the conditions under which two phases are at equilibrium.

The triple point shows the conditions under which all three phases are at equilibrium!

At P's and T's **below** the triple point, the **liquid** phase does not form and the substance **sublimes** from gas to solid (or solid to gas).

A gas at constant **T** will undergo ______to either a liquid or a solid.

Which occurs depends on the ______.

This is a normal temperature-pressure phase diagram:

Where the line between the solid and liquid phases has a **positive** slope.

What does that indicate about the substance?

The temperature-pressure phase diagram for **water** is **not normal**:

where the line between the solid and liquid phases has a **negative** slope.

What does that indicate about water?

Vapour Pressure of Solutions

The **surface** of the **pure wate**r consists **entirely** of water molecules, a fraction of which have enough energy to evaporate.

The **surface** of the **salt water** consists primarily of water molecules but also **some ions** from the salt.

The **same fraction** of water molecules has enough energy to evaporate but, since **fewer** water molecules are on the surface, **fewer** evaporate.

Essentially, the salt ions **block access to the surface.**

As a result the salt water has a **lower** P_{vap} than the pure water.

Thus it will need to be heated to a **higher T** to raise its P_{vap} to equal to atmospheric P.

Hence the **boiling point** of salt water is **higher** than that of pure water.

(a) Sea water

Vapour Pressure of Solutions

Raoult's law defines the vapour pressure of a solvent (A):

$$P_{A} = X_{A} P_{A}^{\circ}$$

P_A is the vapour pressure of the **solvent** (in solution)
 P_A^o is the vapour pressure of the solvent (as a pure liquid)
 X_A is the mole fraction of the solvent molecules.

n.b. Raoult's law **only** calculates the vapour pressure of the **solvent**.

If a **solute** is volatile, it will have a vapour pressure **too**:

$$[A] = k_H P_A$$

[A] is the concentration of the volatile solute **A**, **P**_A is the vapour pressure of the volatile solute and **k**_H is the Henry's law constant (solute-specific).

This is **Henry's law**. It is usually presented when discussing solubility of gases.

An equilibrium constant (K) is only constant with **constant temperature**. Why?

The **enthalpy** and **entropy** change for a reaction vary **slowly** with temperature;

however, the free energy change is strongly temperature-dependent:

At any temperature:

$\Delta G = \Delta H - T \Delta S$

Hence, as ΔG changes with T, **K** changes accordingly

$$\Delta_r G^o_m(T) = -RT \ln[K(T)]$$

For a reaction at temperatures T_1 and T_2 , the following can be stated:

$$\Delta_r G_1^o(T_1) = \Delta_r H^o - T_1 \Delta_r S^o = -RT_1 \ln[K_1]$$

and

$$\Delta_r G_2^o(T_2) = \Delta_r H^o - T_2 \Delta_r S^o = -RT_2 \ln[K_2]$$

Assuming that ΔH and ΔS don't change significantly over the given temperature range:

$$\frac{\Delta_r H^o}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = \ln K_2 - \ln K_1$$

or:

$$\ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta_r H^o}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

 $\mathbf{K}_{\mathbf{w}} = 10^{-14}$ under standard conditions :

$$a_{H+}^{*}a_{OH-} = 10^{-14}$$

 $Kw = 2.38 \times 10^{-14}$

since
$$a_{H+} = a_{OH-}$$

implies $a_{H+} = 10^{-7}$

Hence neutral water have pH 7 at 25 °C.

What is K_w at 37.00 °C?

$$\Delta_{f} H^{\circ}(OH_{(aq)}^{-}) = -230.0 \frac{kJ}{mol}$$

 $\Delta_{f} H^{\circ}(H_{2}O_{(l)}) = -285.8 \frac{kJ}{mol}$

 ΔH_r^{o} = 55.8 kJ/mol

What does this tell us about the pH of water at 37.00 °C?

$$pH = -\log(a_{H^+})$$

$$pH = 6.81$$

The atmospheric pressure in Lethbridge is typically **90 kPa**.

What is the **boiling point** of water on a typical day in Lethbridge?

At sea level the **bp** of water is 100 °C and the atmospheric pressure is 101.3 kPa. Therefore:

P₁ = 101.3 kPa
$$T_1 = 373.15 \text{ K}$$

P₂ = 90 kPa $T_2 = ?$ $\Delta_{vap} H_m^{\circ}(H_2 O) = 40.66 \frac{kJ}{mol}$

Also

$$K = a[H_2O_{(vap)}]/a[H_2O_{(liq)}] = \{P[H_2O_{(vap)}]/P_{stp}\}/1 = P[H_2O_{(vap)}]$$
 No units

Therefore:

 $K_1 = 101.3$ and $K_2 = 90$

96.75 °C

Equilibrium Constant and Temp. (Solutions)

Saturated salt solutions which freeze below 0 $^{\circ}$ C.

Calculate the **freezing point** of $NaCl_{(aq)}$ prepared by dissolving 6 mol NaCl in 1 kg H₂O.

The freezing point of pure water is 0 °C

Also:

$$K = a[H_2O_{(solid)}]/a[H_2O_{(liq)}] = 1/X(H_2O)$$

$$T_1 = 273.15 \text{ K}$$
 $K_1 = 1/X_1 = 1/1 = 1$ (pure water)

 $X_2 = \text{mol } H_20 /(\text{mol } H_20 + \text{mol } \text{NaCl}) = 55.6 \text{ mol}/(55.6 + 6 \text{ mol}) = 0.902$

Therefore:

$$T_2 = ?$$
 $K_2 = 1/X_2 = 1/0.902 = 1.108$

$$\Delta_{\text{fus}} H_m^{\circ}(H_2 O) = 6.007 \frac{kJ}{mol} \qquad \text{Exothermic!!!} \qquad -10.19 \text{ °C}$$