Organic Acids - Carboxylic Acids

Organic acids - carboxylic acid functional group.
Carboxylic acids are readily deprotonated by bases such as NaOH
e.g.

This reaction is product favoured, as the products are more stable than the reactants.

The conjugate base (acetate; $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$) is much more stable than the base (hydroxide, OH^{-}); therefore,
i) OH^{-}is a stronger base than $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$.
ii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\left(\mathrm{pK}_{\mathrm{a}}=4.7\right) \mathrm{a}$ is stronger acid than $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{pK}_{\mathrm{a}}=14\right)$.

Organic Acids

The strength of an acid is dependent on the stability of its conjugate base:

Conjugate base of HCl (a strong acid; $\mathrm{pK}_{\mathrm{a}}=-7$):
Cl^{-}(stable anion and thus a very weak base)

Conjugate base of $\mathrm{H}_{2} \mathrm{O}$ (a weak acid; $\mathrm{pK}_{\mathrm{a}}=14$):
OH^{-}(less stable than Cl^{-}thus a relatively strong base)

The strength of an acid can also be said to be inversely related to the strength of its conjugate base.

Organic Acids (Carboxylic Acids)

Is the reaction below product- or reactant-favoured?

This reaction is equivalent to the acid dissociation equation.
as long as the solution is sufficiently dilute so that the $X_{\text {H2O }} \approx 1$,
its equilibrium constant is the $\mathbf{K}_{\mathbf{a}}$ for $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathbf{H}$:

$$
K_{a}=\frac{a_{\mathrm{H}_{3} \mathrm{O}^{+}} \cdot a_{\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}}}{a_{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}}
$$

Recall that we can relate the $\mathbf{K}_{\mathbf{a}}$ and $\mathbf{p} \mathbf{K}_{\mathbf{a}}$ for an acid via:

$$
p K_{a}=-\log \left[K_{a}\right]
$$

An acid is stronger if it has a large K_{a} and a small $p K_{a}$.

Calculating pH of an Acidic Solution

Consider a 0.32 M solution of phenol $\left(\mathrm{pK}_{\mathrm{a}}=9.95\right)$ at $25.00^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a}}=9.95 \quad \begin{aligned}
\mathrm{K}_{\mathrm{a}}=10^{-9.95} & =1.122 * 10^{-10} \\
& =\boldsymbol{a}(\text { Conj. Base) } \boldsymbol{a}(\text { Conj. Acid) } / \boldsymbol{a} \text { (Acid) } \boldsymbol{a} \text { (Base) } \\
& =\mathrm{xx} /(0.32-\mathrm{x}) \quad \text { assume } \quad \mathrm{x} \ll 0.32 \\
& =\mathrm{x}^{2} / 0.32
\end{aligned} \\
& x=\left(1.122^{*} 10^{-10} * 0.32\right)^{0.5}=5.99 * 10^{-6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \text {assumption valid? }
\end{aligned}
$$

$$
\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.22
$$

$$
\begin{aligned}
X_{0} & =5.99 * 10^{-6} \\
X_{1} & =\left(1.122 * 10^{-10} *\left(0.32-X_{0}\right)\right)^{0.5} \\
& =5.99 * 10^{-6}
\end{aligned}
$$

Organic Acids

We can increase the strength of an acid by adding electron-withdrawing groups (usually very electronegative), further stabilizing its conjugate base.

To increase the acidity of acetic acid, replace one or more hydrogen atoms of the methyl group with halogens:

$$
\mathrm{pK}_{\mathrm{a}}=4.74
$$

This stabilization through σ bonds is called an inductive effect.
Inductive effects are strongest when close to the acidic hydrogen.

NB: $\quad \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ is not significantly more acidic than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

NB: Previously inductive effects were seen to affect the strength of the oxoacids. (e.g. HClO_{2} vs. HClO_{3} vs. HClO_{4})

Organic Acids

Carboxylic acids are among the most acidic organic molecules; however, a number of other functional groups contain acidic hydrogen atoms:
i) Alcohols are as acidic as water. Most have $\mathbf{p K}_{\mathrm{a}}{ }^{\prime} \mathbf{s}$ of $\boldsymbol{\sim 1 5 - 1 8}$.

NB: Inductive effects can lower these values to $\mathbf{\sim 1 2}$.
ii) Phenols are more acidic than alcohols. Most have $\mathbf{p K}_{\mathrm{a}}{ }^{\prime} \mathbf{s}$ of $\mathbf{\sim 8} \mathbf{- 1 0}$.

NB: Their $\mathbf{p K}_{\mathrm{a}}{ }^{\prime} \mathbf{s}$ can go as low as $\mathbf{1}$ with the right groups attached to the ring.
iii) Thiols (R-SH) are more acidic than alcohols. Most have $\mathbf{p K}_{\mathrm{a}}$'s of $\mathbf{~} \mathbf{1 0 - 1 2}$.

NB: Also subject to inductive effects.
iv) Amines are not acidic in water, but can be deprotonated by strong bases in unreactive solvents like alkanes or ethers. Their $\mathbf{p K}{ }_{\mathbf{a}}{ }^{\text {'s }}$ are typically ~35-40!

Calculating pH of an Acidic Solution

A strong acid, $\mathrm{HA},\left(\mathrm{pK}_{\mathrm{a}}<0\right)$ dissociates fully in water:
A stronger acid than $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{pK}_{\mathrm{a}}=0\right)$ generates $\mathrm{H}_{3} \mathrm{O}^{+}$and conj. base, A^{-}.

This effect is known as solvent leveling:
No acid stronger than the conjugate acid of the solvent can exist in any solution of that solvent.

No base stronger than the conjugate base of the solvent can exist in any solution of that solvent.

Weak acids aren't subject to solvent leveling:
Consider the percentage of acid molecules that have dissociated.
In a concentrated solution of a weak acid, the \% dissociation is small
Hence the actual conc. of acid is close to the nominal conc.
As a solution becomes more dilute, this assumption becomes less valid.

Calculating pH of an Acidic Solution

Consider a $4.2 \times 10^{-5} \mathrm{M}$ solution of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$ at $25.00{ }^{\circ} \mathrm{C}$.

Distribution Curves

Working backwards, using the K_{a} equation, the percent dissociation of an acid at a given $\mathbf{~ p H}$ can be determined:

The $\mathbf{p H}$ tells us the activity of $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$, hence as long as the $\mathbf{K}_{\mathbf{a}}$ value is known, the calculation proceeds as:

$$
\begin{gathered}
K_{a}=\frac{a_{H_{3} O^{+}} \cdot a_{A^{-}}}{a_{H A}} \quad \text { so } a_{H A}=\frac{a_{H_{3} O^{+}}}{K_{a}} a_{A^{-}} \\
\% D=\frac{a_{A^{-}}}{a_{H A_{0}}}=\frac{a_{A^{-}}}{a_{A^{-}}+a_{H A}}=\frac{a_{A^{-}}}{a_{A^{-}}+a_{A^{-}} \frac{a_{H_{3} O^{+}}}{K_{a}}}=\frac{1}{1+\frac{a_{H_{3} O^{+}}}{K_{a}}}=\frac{K_{a}}{K_{a}+a_{H_{3} O^{+}}}
\end{gathered}
$$

Calculate the percent dissociation of acetic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$ at pH 4.00 .

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=10^{-4.74}=1.820^{*} 10^{-5} \mathrm{M} \quad a_{\mathrm{H} 3 \mathrm{O}_{+}}=10^{-4} \mathrm{M} \\
& \quad \% D=\frac{K_{a}}{K_{a}+a_{\mathrm{H}_{3} \mathrm{O}^{+}}}=\frac{1.82 * 10^{-5}}{1.82 * 10^{-5}+1.00 * 10^{-4}}=0.154=15.4 \%
\end{aligned}
$$

Distribution Curves

If we repeat this calculation at a large number of different pH values, we generate what is known as a distribution curve:

NB: the two curves cross at the $\mathbf{p K} \mathbf{K}_{\mathrm{a}}$ of the acid!
The pK_{a} of an acid is the pH at which it is exactly 50% dissociated.

Distribution Curves

It is easy to see why an acid will be 50% dissociated at its pK_{a}. Consider the definition of pKa:

$$
\begin{gathered}
-\log \left(K_{a}\right)=-\log \left(\frac{a_{H_{3} O^{+}} \cdot a_{A^{-}}}{a_{H A}}\right) \\
p K_{a}=-\log \left(a_{H_{3} O^{+}}\right)-\log \left(\frac{a_{A^{-}}}{a_{H A}}\right)=p H-\log \left(\frac{a_{A^{-}}}{a_{H A}}\right) \\
p H=p K_{a}+\log \left(\frac{a_{A^{-}}}{a_{H A}}\right)
\end{gathered}
$$

Henderson-Hasslebalch equation.
note that if: $\boldsymbol{a}_{\mathrm{A}-} / \boldsymbol{a}_{\mathrm{HA}}=1$, then:

$$
\log \left(\frac{a_{A^{-}}}{a_{H A}}\right)=0
$$

hence :

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}
$$

Distribution Curves for Polyprotic Acids

Consider an acid that has multiple acidic protons with pK_{a} values are different by several units.

The distribution curve will look like several monoprotic distribution curves superimposed Ex) Oxalic Acid:

If the pK_{a} values are too close, the distribution curve will become more complex.

Organic Bases - Amines

Organic base: generally an amine.
Amines are readily protonated by acids:
e.g.

The basicity of amines is due to the lone pair on the nitrogen atom which makes all amines ($R=H$, alkyl or combination) Lewis bases.

Organic Bases

There are other functional group containing nitrogen.
Why is an amine considered a good base, but an amide is not?

The nitrogen atom of an amide is so weakly basic that the oxygen of the carbonyl group will be protonated over it!

Quantifying Basicity

A base's strength is assessed by :

1) $\mathbf{K}_{\mathbf{b}}$ (or pKb$)$
or
2) The $\mathbf{K}_{\mathbf{a}}$ (or pK_{a}) of the conjugate acid.

Since the strength of a base is inversely related to the strength of its conjugate acid,.

Smaller $\mathrm{pK}_{\mathrm{a}}=$ Stronger Conjugate Acid $=$ Weaker Base

Quantifying Basicity: K_{b}

This is the equilibrium constant for reaction of the base with water:

$$
K_{b}=\frac{a_{O H^{-}} \cdot a_{H B^{+}}}{a_{B}}
$$

Base

Acid
Conj. Acid
Conj Base
K_{b} is inversely proportional to K_{a} for the conjugate acid:

$$
K_{b}=\frac{K_{w}}{K_{a}}
$$

where $K_{w}=10^{-14}$ under standard conditions.

$$
\begin{array}{ll}
K_{w}=K_{a} \cdot K_{b} \quad & -\log \left(K_{a} \cdot K_{b}\right)=-\log \left(K_{w}\right) \\
& -\log \left(K_{a}\right)-\log \left(K_{b}\right)=-\log \left(K_{w}\right)
\end{array}
$$

$$
\rightarrow p K_{a}+p K_{b}=p K_{w}=14
$$

$\mathrm{pK}_{\mathrm{b}}=3.4$

Larger $\mathbf{K}_{\mathbf{b}}=$ Smaller $\mathbf{p K} \mathbf{K}_{\mathbf{b}}=$ Stronger Base

Quantifying Basicity: K_{b}

Ex) Compute the K_{b} of aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ given that the pK_{a} of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is 4.7.

$$
\begin{aligned}
K_{b}=K_{w} / K_{a} & \\
& =10^{-14} / 10^{-4.7} \\
& =10^{-14} / 2.00 * 10^{-5}
\end{aligned}
$$

$$
=5.00 * 10^{-10}
$$

$$
\mathrm{pK}_{\mathrm{b}}=-\log \left(5.00 * 10^{-10}\right)=9.30
$$

Alternatively

$$
\begin{aligned}
\mathrm{pK}_{\mathrm{b}}=14 & -\mathrm{pK}_{\mathrm{a}} \\
& =14-4.7=9.30
\end{aligned}
$$

Calculating pH of a Basic Solution

$$
\mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{HB}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

Using the K_{b} expression and nominal solution concentration to calculate a_{OH} then

$$
K_{b}=\frac{a_{O H^{-}} \cdot a_{H B^{+}}}{a_{B}}
$$

Using the K_{w} expression calculate $a_{\mathrm{H}+}$ from $a_{\mathrm{OH}-}$

$$
a_{O H^{-}}=\frac{K_{w}}{a_{H_{3} O^{+}}} \quad \quad \text { Recall: at } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=10^{-14} .
$$

Finally use $\mathrm{a}_{\mathrm{H}+}$ to calculate pH .

Calculating pH of a Basic Solution

Calculate the pH of a 0.71 M aqueous solution of aniline at $25^{\circ} \mathrm{C}$.

	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\left(\mathrm{aq)}+\mathrm{H}_{2} \mathrm{O}_{(1)}\right.$		$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$		
Initial	0.71 M	55 M	0	0 ($10^{-7} \mathrm{M}$)	Conc.
Change	-x	-x	x	x	
Eqlm	0.71-x	1	x	x	Activities
$\mathrm{pKb}=10=>\mathrm{K}_{\mathrm{b}}=10^{-10}$					
$\begin{aligned} \mathrm{K}_{\mathrm{b}} & =a\left(\mathrm{HB}^{+}\right) a\left(\mathrm{OH}^{-}\right) / a(\mathrm{~B}) a\left(\mathrm{H}_{2} \mathrm{O}\right) \\ & =\mathrm{xx} /(0.71-\mathrm{x}) \end{aligned}$					
Assume $\mathrm{x} \ll 0.71$					
$x=\left(10^{-10 *} 0.71\right)^{0.5}=8.42^{*} 10^{-6}$					
				$a\left(\mathrm{OH}^{-}\right)$	$8.42 * 10^{-6}$
$a\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=\mathrm{Kw} / a\left(\mathrm{OH}^{-}\right)=10^{-14} / 8.42^{*} 10^{-6}=1.188 * 10^{-9}$					
$\mathrm{pH}=-\log \left(1.188 * 10^{-9}\right)=8.93$					

Alternatively : $\mathrm{pOH}=-\log \left(8.42^{*} 10^{-6}\right)=5.07 \mathrm{pH}=14-\mathrm{pOH}=8.93$

Amino Acids: Acid and Base

The structure of an amino acid is often shown as follows:

The name comes from having an amine group and a carboxylic acid group.
This is not how an amino acid actually exists under biological conditions (i.e. $\mathrm{pH} \sim 7$).
Instead, it exists as the zwitterion:

Amino Acids: Acid and Base

Why is this?
The pK_{a} for the $-\mathrm{CO}_{2} \mathrm{H}$ proton is typically ~ 2 (slightly lower than the standard 3-5 range for carboxylic acids).

The pK_{a} for the conjugate acid of the amine group (i.e. for the $-\mathrm{NH}_{3}{ }^{+}$ proton) is typically $\sim 9-10$.

Exercise:

Use this data to sketch a distribution curve for the amino acid, labeling with the major species within each pH range.

