Exercise 10.2 Structural Isomers

1.	Increasing the number of different groups attached to the carbon atoms rapidly increases the number of possible structural isomers.
(a)	Draw both structural isomers for C_4H_{10} .
(b)	Draw all four structural isomers for C_4H_9F .
(c)	Draw all nine structural isomers for $C_4H_8F_2$.
(d)	How many structural isomers are possible for C_4H_8FCl ? Hint: This number will be larger than 9. The best approach to this question is simply to draw them all and count how many you got.

2.	Increasing the unsaturation index* rapidly increases the number of possible structural isomers.
*1111521	turation index (aka "degrees of unsaturation") = # rings + # pi bonds in a molecule
(a)	Draw both structural isomers for C_4H_{10} .
(b)	Draw all five structural isomers for C_4H_8 .
(d)	How many structural isomers are possible for C_4H_6 ? Hint: This number will be larger than 5. The best approach to this question is simply to draw them all and count how many you got.