Exercise 10.2
 Structural Isomers

1. Increasing the number of different groups attached to the carbon atoms rapidly increases the number of possible structural isomers.
(a) Draw both structural isomers for $C_{4} H_{10}$.
(b) Draw all four structural isomers for $\mathrm{C}_{4} \mathrm{H}_{9} F$.
(c) Draw all nine structural isomers for $C_{4} H_{8} F_{2}$.
(d) How many structural isomers are possible for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{FCl}$?

Hint: This number will be larger than 9. The best approach to this question is simply to draw them all and count how many you got.
2. Increasing the unsaturation index* rapidly increases the number of possible structural isomers.
*unsaturation index (aka "degrees of unsaturation") = \# rings + \# pi bonds in a molecule
(a) Draw both structural isomers for $C_{4} H_{10}$.
(b) Draw all five structural isomers for $C_{4} H_{8}$.
(d) How many structural isomers are possible for $\mathrm{C}_{4} \mathrm{H}_{6}$?

Hint: This number will be larger than 5. The best approach to this question is simply to draw them all and count how many you got.

