Answers to Exercise 12.2 K_a, pK_a, K_b and pK_a

1.

(a) Start with the initial equation:

 $K_a \cdot K_b = K_w$ Take the logarithm of both sides and multiply both sides by -1: $-log(K_a \cdot K_b) = -log(K_w)$ Recognize that the log $(a \times b) = log(a) + log(b)$: $-[log(K_a) + log(K_b)] = -log(K_w)$ Break open the brackets on the left side of the equation: $-log(K_a) + [-log(K_b)] = -log(K_w)$ Use *pAnything* = -log(Anything) to convert each term into *pSomething*: $pK_a + pK_b = pK_w$

Finally, $pK_w = -log(K_w)$ and $K_w = 10^{-14}$ at 25°C. So, $pK_w = -log(10^{-14}) = -(-14) = 14$ at 25°C. Therefore, $pK_a + pK_b = 14$ at 25°C.

- (b) $pK_a = -log(K_a)$ therefore $K_a = 10^{-pK_a}$ For formic acid, $K_a = 10^{-3.74} = 1.8 \times 10^{-4}$
- (c)

- formic acid
 formate

 $K_a = 1.8 \times 10^{-4}$ $K_b = 5.5 \times 10^{-11}$
 $pK_a = 3.74$ $pK_b = 10.26$
- (d) The simplest approach is to calculate pK_b first then use it to calculate K_b . At 25°C, $pK_a(conj. acid) + pK_b(conj. base) = 14$. Therefore, $pK_b(conj. base) = 14 - pK_a(conj. acid)$ Therefore, $pK_b(formate) = 14 - pK_a(formic acid) = 14 - 3.74 = 10.26$

 $pK_b = -log(K_b)$ therefore $K_b = 10^{-pK_b}$ For formic acid, $K_a = 10^{-10.26} = 5.5 \times 10^{-11}$

Relative Strength	pК _a	Ka	Acid
Strong	7	1 × 10 ⁷ (10,000,000)	НСІ
Border between strong and weak	0	1	$H_{3}O^{+}$
Weak	2.1	$10^{-2.1} = 0.008$	H_3PO_4
Very weak	14	1×10^{-14} (0.00000000000000000000000000000000000	H ₂ 0
So weak we don't call it an acid	48	1×10^{-48}	CH ₄

3.

(a) Look up the pK_a values for both CH_3CH_2SH and CH_3CH_2OH . Whichever species has a lower pK_a value is the stronger acid.

<u>or</u>

Look up the K_a values for both CH_3CH_2SH and CH_3CH_2OH . Whichever species has a higher K_a value is the stronger acid.

(b) Look up the pK_a values for both $CH_3CH_2SH_2^+$ and $CH_3CH_2OH_2^+$. Whichever species has a higher pK_a value is the weaker acid and therefore has the stronger conjugate base.

<u>or</u> Look up the K_a values for both $CH_3CH_2SH_2^+$ and $CH_3CH_2OH_2^+$. Whichever species has a lower K_a value is the weaker acid and therefore has the stronger conjugate base.

It is important to note that it is the K_a (or pK_a) value for a base's conjugate acid that is relevant for part (b) <u>NOT</u> the K_a (or pK_a) value for the base itself!

If you want to compare properties of the bases themselves, compare K_b (or pK_b) values. A stronger base has a larger K_b or a smaller pK_b .