Answers to Exercise 12.3

Calculating $\boldsymbol{p H}$ of Weak Acid Solutions

1.

(a) i. and ii. both valid
$K_{a}=10^{-p K_{a}}=10^{-6.62}=2.4 \times 10^{-7}$
$a_{H A}=0.015$
$K_{a} \cdot a_{H A}=\left(2.4 \times 10^{-7}\right)(0.015)=3.6 \times 10^{-9} \quad$ (significantly larger than 10^{-14} so the initial concentration of H^{+}will be dwarfed by that produced by dissociation of $H A$)
$K_{a} \ll a_{H A}$ so only a tiny fraction of the acid will dissociate.
(b) i. and ii. both valid
$K_{a}=10^{-p K_{a}}=10^{-9.95}=1.1 \times 10^{-10}$
$a_{H A}=0.25$
$K_{a} \cdot a_{H A}=\left(1.1 \times 10^{-10}\right)(0.25)=2.8 \times 10^{-11} \quad$ (significantly larger than 10^{-14} so the initial concentration of H^{+}will be dwarfed by that produced by dissociation of $H A$)
$K_{a} \ll a_{H A}$ so only a tiny fraction of the acid will dissociate.
(c) ii. valid
$K_{a}=10^{-p K_{a}}=10^{-0.62}=0.24$
$a_{H A}=0.025$
$K_{a} \cdot a_{H A}=(0.24)(0.025)=0.0060$ (significantly larger than 10^{-14} so the initial concentration of H^{+}will be dwarfed by that produced by dissociation of $H A$).
It is not true, however, that $K_{a} \ll a_{H A}$. As such, expect a significant fraction of acid to dissociate.
(d) neither assumption valid
$K_{a}=10^{-p K_{a}}=10^{-4.19}=6.5 \times 10^{-5}$
$a_{H A}=8 \times 10^{-8}$
$K_{a} \cdot a_{H A}=\left(6.5 \times 10^{-5}\right)\left(8 \times 10^{-8}\right)=5.2 \times 10^{-12}\left(\right.$ not significantly larger than 10^{-14}, so expect the initial concentration of H^{+}to be relevant and to also need to address the effect of the $\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$equilibrium).
Note that since the $p K_{a}$ of the acid is significantly lower than 7 , you can predict that the acid almost entirely dissociates. The Distribution Curves notes/practice questions will show you why.
2.
(a) Step 1: Write a balanced chemical equation and organize all known information

	$H A_{(a q)}$	\rightleftharpoons	$H_{(a q)}^{+}$	+
I (M)	0.015	10^{-7}		$A_{(a q)}^{-}$
C (M)	$-x$		$+x$	
E (M)	$0.015-x \approx 0.015$		$10^{-7}+x \approx x$	

Both assumptions described in question 1 have been made since both were deemed to be reasonable. Always check assumptions at the end of the calculation!

Step 2: Write equilibrium constant expression

$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$

Step 3: Calculate $\boldsymbol{K}_{\boldsymbol{a}}$ from $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$

$p K_{a}=-\log K_{a}$
$K_{a}=10^{-p K_{a}}$
$K_{a}=10^{-6.62}$
$K_{a}=2.4 \times 10^{-7}$
Step 4: Calculate x
$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$
$2.4 \times 10^{-7}=\frac{(x)(x)}{0.015}$
$\left(2.4 \times 10^{-7}\right)(0.015)=x^{2}$
$x=\sqrt{\left(2.4 \times 10^{-7}\right)(0.015)}$
$x=6.0 \times 10^{-5}$
Step 5: Check assumptions. If invalid, repeat calculation without the invalid assumption.
Assumption \#1: $10^{-7}+x \approx x \quad 10^{-7}+0.000060=0.000060$ assumption okay
Assumption \#2: $0.015-x \approx 0.015 \quad 0.015-0.000060=0.015 \quad$ assumption okay
Step 6: Calculate pH from $\boldsymbol{a}_{\boldsymbol{H}^{+}}$
$a_{H^{+}}=x=6.0 \times 10^{-5}$
$p H=-\log \left(a_{H^{+}}\right)$
$p H=-\log \left(6.0 \times 10^{-5}\right)$
$p H=4.22$

Step 7: Check your work

Does your answer seem reasonable?
The $p K_{a}$ tells us that this is a weak acid, so expect a pH below 7.
If this had been a strong acid, the pH would have been $-\log (0.015)=1.82$. Since it is a weak acid, it makes sense that the pH is higher than that.
(b) Step 1: Write a balanced chemical equation and organize all known information

	$H A_{(a q)}$	\rightleftharpoons	$H_{(a q)}^{+}$	+
I (M)	0.25	10^{-7}		$A_{(a q)}^{-}$
C (M)	$-x$		$+x$	
E (M)	$0.25-x \approx 0.25$		$10^{-7}+x \approx x$	

Both assumptions described in question 1 have been made since both were deemed to be reasonable. Always check assumptions at the end of the calculation!

Step 2: Write equilibrium constant expression

$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$
Step 3: Calculate $\boldsymbol{K}_{\boldsymbol{a}}$ from $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$
$p K_{a}=-\log K_{a}$
$K_{a}=10^{-p K_{a}}$
$K_{a}=10^{-9.95}$
$K_{a}=1.1 \times 10^{-10}$
Step 4: Calculate \mathbf{x}
$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$
$1.1 \times 10^{-10}=\frac{(x)(x)}{0.25}$
$\left(1.1 \times 10^{-10}\right)(0.25)=x^{2}$
$x=\sqrt{\left(1.1 \times 10^{-10}\right)(0.25)}$
$x=5.3 \times 10^{-6}$
Step 5: Check assumptions. If invalid, repeat calculation without the invalid assumption.
Assumption \#1: $10^{-7}+x \approx x \quad 10^{-7}+0.000005=0.0000053$ assumption okay
Assumption \#2: $0.25-x \approx 0.25 \quad 0.25-0.0000053=0.25 \quad$ assumption okay
Step 6: Calculate $\mathbf{p H}$ from $\boldsymbol{a}_{\boldsymbol{H}^{+}}$
$a_{H^{+}}=x=5.3 \times 10^{-6}$
$p H=-\log \left(a_{H^{+}}\right)$
$p H=-\log \left(5.3 \times 10^{-6}\right)$
$p H=5.28$
Step 7: Check your work
Does your answer seem reasonable?
The $p K_{a}$ tells us that this is a weak acid, so expect a pH below 7 .
If this had been a strong acid, the pH would have been $-\log (0.25)=0.60$. Since it is a weak acid, it makes sense that the pH is higher than that.
(c) Step 1: Write a balanced chemical equation and organize all known information
$\begin{array}{lccc}\mathrm{I}(\mathrm{M}) & 0.025 & 10^{-7} & 0 \\ \mathrm{C}(\mathrm{M}) & -x & +x & +x \\ \mathrm{E}(\mathrm{M}) & 0.025-x & 10^{-7}+x \approx x & x\end{array}$
The first assumption described in question 1 has been made since it was deemed to be reasonable. Always check assumptions at the end of the calculation!
Step 2: Write equilibrium constant expression
$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$
Step 3: Calculate $\boldsymbol{K}_{\boldsymbol{a}}$ from $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$
$p K_{a}=-\log K_{a}$
$K_{a}=10^{-p K_{a}}$
$K_{a}=10^{-0.62}$
$K_{a}=0.24 \quad 1$ sig. fig.; however, all digits will be used in later steps
Step 4: Calculate \mathbf{x}
$K_{a}=\frac{\left(a_{H^{+}}\right)\left(a_{A^{-}}\right)}{a_{H A}}$
$0.24=\frac{(x)(x)}{0.025-x}$
$0.24(0.025-x)=x^{2}$
$0.0060-0.24 x=x^{2}$
$x^{2}+0.24 x-0.0060=0$
Use quadratic equation (or other tools) to solve, giving:
$x=0.023$
($x=-0.26$ would give negative concentrations for H^{+}and A^{-}- which is impossible)
Step 5: Check assumption. If invalid, repeat calculation without the invalid assumption.
Assumption \#1: $10^{-7}+x \approx x \quad 10^{-7}+0.023=0.023 \quad$ assumption okay
Step 6: Calculate $\mathbf{p H}$ from $\boldsymbol{a}_{\boldsymbol{H}^{+}}$
$a_{H^{+}}=x=0.023$
$p H=-\log \left(a_{H^{+}}\right)$
$p H=-\log (0.023)$
$p H=1.64$
Step 7: Check your work
Does your answer seem reasonable?
The $p K_{a}$ tells us that this is (just barely) a weak acid, so expect a pH below 7.
If this had been a strong acid, the pH would have been $-\log (0.025)=1.60$. Given that this is almost a strong acid ($p K_{a}$ extremely close to 0), it's not entirely surprising that the two values are so close.
(d) Step 1: Calculate the amount of \boldsymbol{H}^{+}generated when benzoic acid dissociates fully This is stoichiometry (not an equilibrium ICE table) since the reaction goes to completion.

	$H A_{(a q)}$	\rightleftharpoons	$H_{(a q)}^{+}$	+
$\mathrm{M}_{\text {initial }}$	8×10^{-8}		1.0×10^{-7}	$A_{(a q)}^{-}$
$\mathrm{M}_{\text {change }}$	-8×10^{-8}		$+8 \times 10^{-8}$	0
$\mathrm{M}_{\text {final }}$	≈ 0	1.8×10^{-7}	$+8 \times 10^{-8}$	

Step 2: Set up ICE table for the $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+} / \mathrm{OH}^{-}$equilibrium after acid fully dissociates

	$\mathrm{H}_{2} \mathrm{O}_{(l)}$	\rightleftharpoons	$H_{(a q)}^{+}$	+	$\mathrm{OH}_{(a q)}^{-}$
I (M)	n / a		1.8×10^{-7}		1.0×10^{-7}
C (M)	+ x		x		$-x$
E (M)	n / a		$1.8 \times 10^{-7}-x$		$1.0 \times 10^{-7}-x$

You could also write $-x$ in the water column and $+x$ in the other two columns. If you do that, you'll get a negative value for x. As long as you factor in that negative sign properly, the calculation will work perfectly well.
It is very important that you use the correct initial concentrations of H^{+}and OH^{-}and that you do NOT approximate either as 0 .

Step 3: Write equilibrium constant expression

$K_{w}=\frac{\left(a_{H^{+}}\right)\left(a_{O H^{-}}\right)}{a_{H_{2} \mathrm{O}}}=\left(a_{H^{+}}\right)\left(a_{\mathrm{OH}^{-}}\right) \quad$ since $a_{\mathrm{H}_{2} \mathrm{O}}=1$
Step 4: Calculate \mathbf{x}
$K_{w}=\left(a_{H^{+}}\right)\left(a_{O H^{-}}\right)$
$1.00 \times 10^{-14}=\left(1.8 \times 10^{-7}-x\right)\left(1.0 \times 10^{-7}-x\right)$
$1.00 \times 10^{-14}=\left(1.8 \times 10^{-14}\right)-\left(2.8 \times 10^{-7}\right) x+x^{2}$
$0=\left(8 \times 10^{-15}\right)-\left(2.8 \times 10^{-7}\right) x+x^{2}$
or $\quad x^{2}-\left(2.8 \times 10^{-7}\right) x+\left(8 \times 10^{-15}\right)=0$
Use quadratic equation (or other tools) to solve, giving:
$x=3.2 \times 10^{-8}$
($x=2.5 \times 10^{-7}$ gives negative concentrations for H^{+}and $\mathrm{OH}^{-}-$which is impossible)
Step 5: Calculate pH from $\boldsymbol{a}_{\boldsymbol{H}^{+}}$
$a_{H^{+}}=\left(1.8 \times 10^{-7}\right)-x=\left(1.8 \times 10^{-7}\right)-\left(3.2 \times 10^{-8}\right)=1.5 \times 10^{-7}$
$p H=-\log \left(a_{H^{+}}\right)$
$p H=-\log \left(1.5 \times 10^{-7}\right)$
$p H=6.83$

Step 6: Check your work

Does your answer seem reasonable?

The $p K_{a}$ tells us that this is a weak acid, so expect a $p H$ below 7. It's a very dilute solution, so expect the pH to be fairly close to 7. 6.83 is therefore a reasonable answer.

