## Answers to Exercise 2.2

## Linear Combination of Atomic Orbitals: Homonuclear Diatomics

If you don't need to draw the pictures of the atomic orbitals first (i.e. the pictures on the left of the arrows), that's fine. Unless specifically requested in a question, they're not necessary; they're simply a helpful intermediate step.
1.
(a) $2 p_{z}+2 p_{z}$ (constructive overlap)

sigma
bonding
(b) $2 p_{x}+2 p_{x}$ (constructive overlap)

pi
bonding
(c) $2 p_{y}+2 p_{y}$ (constructive overlap)

pi
bonding
$2 p_{z}-2 p_{z}$ (destructive overlap)

sigma
antibonding
$2 p_{x}-2 p_{x}$ (destructive overlap)

pi antibonding
$2 p_{y}-2 p_{y}$ (destructive overlap)

pi antibonding
2.

(b) $3 p_{z}+3 p_{z}$ (constructive overlap)

(c) $3 p_{x}+3 p_{x}$ (constructive overlap)

(d) $3 p_{y}+3 p_{y}$ (constructive overlap)

$3 s-3 s \quad$ (destructive overlap)

$3 p_{z}-3 p_{z}$ (destructive overlap)

$3 p_{x}-3 p_{x}$ (destructive overlap)

pi antibonding

$$
3 p_{y}-3 p_{y} \text { (destructive overlap) }
$$


pi
antibonding
3.
(a) $3 d_{z^{2}}+3 d_{z^{2}}$ (constructive overlap)
$3 d_{z^{2}}-3 d_{z^{2}}$ (destructive overlap)

(b) $3 d_{x z}+3 d_{x z}$ (constructive overlap)
pi
bonding
$3 d_{x z}-3 d_{x z}$ (destructive overlap)

pi
antibonding
(c) $\quad 3 d_{y z}+3 d_{y z}$ (constructive overlap)

pi
bonding
$3 d_{y z}-3 d_{y z}$ (destructive overlap)

pi
antibonding
4.
(a)


0 nodes
(b)


3 nodes
(c) The remaining two MOs should have 1 node and 2 nodes. They are drawn below.


1 node

2 nodes

Nodes are shown using dashed red lines. You only need to draw nodes if the question asks for them.

