Answers to Exercise 3.2 Molecular Orbital Energy Level Diagrams: Heteronuclear Diatomics

1.

(a) The electron configuration for Li is $1s^22s^1$, so Li has 1 valence electron. The electron configuration for H is $1s^1$, so H has 1 valence electron. Therefore, LiH has 2 valence electrons.

If your pictures look the same as the ones on the diagram for HHe⁺, that's fine. The computer shows that the polarization is even stronger in LiH than in HHe⁺.

(b)

The Lewis diagram gives a bond order of 1 since the Lewis diagram shows a single bond. The bond order calculated from the molecular orbital energy level diagram is $\frac{2-0}{2} = \frac{2}{2} = 1$. They match!

(c) H is more electronegative than Li, so the Li - H bond is polar (with H as the negative end). The electrons in *LiH* are in the 1σ orbital which is strongly polarized toward H. As such, the electrons in *LiH* spend more time near H than near Li. This means that H should be the negative end of the Li - H bond, supporting the prediction based on electronegativities.

Li——H

(d) If *LiH* reacted as an electron pair acceptor in a reaction, the LUMO $(2\sigma^*)$ would accept the electron pair. This orbital is strongly polarized toward Li, so Li would be the atom accepting the electrons:

Adding electrons to the antibonding $2\sigma^*$ orbital would reduce the Li - H bond order from 1 to 0, resulting in breaking of the Li - H bond.

- (a) The electron configuration for O is $1s^22s^22p^4$, so O has 6 valence electrons. The electron configuration for H is $1s^1$, so H has 1 valence electron. Therefore, OH would have 7 valence electrons, and OH^- has 8 valence electrons. Grouping the valence AOs by symmetry and energy gives:
 - one pi-symmetric $2p_x$ orbital on O,
 - one pi-symmetric $2p_y$ orbital on O,
 - one sigma-symmetric 2s orbital on O that is more than 1 Ry away from the nearest other sigma-symmetric orbital, and
 - two sigma-symmetric AOs close enough in energy to combine: 1s(H) and $2p_z(0)$.

If your picture of $1\sigma_{nb}$ just looks like a 2s orbital on 0, that's fine.

(b)

The Lewis diagram gives a bond order of 1 since the Lewis diagram shows a single bond. The bond order calculated from the molecular orbital energy level diagram is $\frac{2-0}{2} = \frac{2}{2} = 1$. They match!

Θ.. :0—-H

(c) The HOMO and LUMO have been labeled on the diagram in part (a).
Since *OH⁻* is an anion, it is more likely to react as an electron pair donor.
As an electron pair donor, *OH⁻* will react with its HOMO.
The HOMO (1π_{nb}) is polarized toward O, so *OH⁻* will tend to donate an electron pair from the oxygen atom. Since the HOMO is nonbonding, donating a pair of electrons from it will not change the *O - H* bond order.

2.

- (a) The electron configuration for *N* is $1s^22s^22p^3$, so *N* has 5 valence electrons. The electron configuration for *O* is $1s^22s^22p^4$, so *O* has 6 valence electrons. Therefore, *NO* would have 11 valence electrons, and *NO*⁺ has 10 valence electrons. Grouping the valence AOs by symmetry and energy gives:
 - two pi-symmetric $2p_x$ orbitals, one from each atom,
 - two pi-symmetric $2p_v$ orbitals, one from each atom,
 - four sigma-symmetric orbitals close enough in energy to combine: 2s(N), 2s(O), $2p_z(N)$ and $2p_z(O)$.

 1σ and 1π are slightly polarized toward O. $4\sigma^*$ and $2\pi^*$ are slightly polarized toward N. Because the difference in energy between the AOs of N and the AOs of O is not very large, this polarization is not very easy to see (except in $2\pi^*$). It is even harder to predict and see the polarization in $2\sigma^*$ and 3σ (since they are made from both 2s and $2p_z$ orbitals from both N and O).

(b) The HOMO and LUMO have been labeled on the diagram in part (a).

Since NO^+ is a cation, it is more likely to react as an electron pair acceptor.

As an electron pair acceptor, $N0^+$ will react with its LUMO.

The LUMO $(2\pi^*)$ is polarized toward N, so NO^+ will tend to accept an electron pair at the nitrogen atom. Since the LUMO is antibonding, adding a pair of electrons to it will reduce the bond order from 3 to 2.

3.