Exercise 5.5 Sigma Bonds and Pi Bonds in Valence Bond Theory

1.	Complete the following sentences.
(a)	According to VB theory, a single bond consists of sigma bond(s) and pi bond(s).
(b)	According to VB theory, a double bond consists of sigma bond(s) and pi bond(s).
(c)	According to VB theory, a triple bond consists of sigma bond(s) and pi bond(s).
2.	The Lewis structure for N_2H_2 is shown below. Consider this molecule according to valence bond theory.
(a) (b)	Name the set of hybrid atomic orbitals used by each N atom. Clearly indicate which orbitals contribute to each σ bond in N ₂ H ₂ . <i>Answer on the diagram above</i> .
(c)	Clearly indicate which orbitals contribute to each π bond in N ₂ H ₂ . Answer on the diagram above.
3. (a)	Consider the bonding in $COBr_2$ according to valence bond theory. Draw a Lewis structure for $COBr_2$.
(b)	What is the hybridization of the carbon atom in COBr ₂ ?
(c)	Clearly indicate which atomic orbitals combine to make each σ bond in COBr ₂ . <i>Answer on the diagram you drew in part (a).</i>
(d)	Clearly indicate which atomic orbitals combine to make each π bond in COBr ₂ .

Answer on the diagram you drew in part (a).