
CHEMISTRY 2000

Topic #1: Bonding – What Holds Atoms Together?
Fall 2020

Dr. Susan Findlay
See Exercises 5.1 and 5.2



2

Free Electron Model for Metals

 Metals are very good at conducting both heat and electricity.
 In CHEM 1000, metals were described as behaving like a set of 

nuclei forming a lattice with a “sea of electrons” shared between 
all nuclei (moving freely between them):

This is referred to as the free electron model for metals.
 This model explains many of the properties of metals:

 Electrical Conductivity:  The mobile electrons carry current.
 Thermal Conductivity: The mobile electrons can also carry heat.
 Malleability and Ductility: Deforming the metal still leaves each 

cation surrounded by a “sea of electrons”, so little energy is 
required to either stretch or flatten the metal.

 Opacity and Reflectance (Shininess): The electrons will have a wide 
range of energies, so can absorb and re-emit many different 
wavelengths of light.
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Band Theory for Metals (and Other Solids)

 Thus far, whenever we’ve seen electrons, they’ve been in orbitals 
(atomic orbitals for atoms, molecular orbitals for molecules).  
What about the electrons in a metal?

 These solids can be treated in a way similar to molecular orbital 
theory; however, the “MOs” in a metal are called states.  
Consider that, in a metal, there are no distinct molecules.        
You could almost say that an entire piece of metal is a molecule.  
That’s how we’ll be treating them:
 We combine atomic orbitals from every atom in the sample to make 

states which are essentially very large molecular orbitals.  
 As in LCAO-MO theory, the number of states produced must equal 

the number of atomic orbitals combined.  
 The Pauli exclusion principle still applies, so each state can only hold 

two electrons.
 For a metal to conduct electricity, its electrons must be able to gain 

enough extra energy to be excited into higher energy states.
 The highest energy state when no such excitation has occurred    

(i.e. in the ground state metal) is called the Fermi level.  
Essentially, the Fermi level is the “HOMO”.
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Band Theory for Metals (and Other Solids)

 What happens when two Li atoms approach to make Li2?

 What about when three Li atoms make Li3?

 What about when four Li atoms make Li4?

 Note that, for every atom added:
 An additional MO is formed
 The energies of the MOs get closer together
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Band Theory for Metals (and Other Solids)

Image adapted from “Chemical Structure and Bonding” by R. L. DeKock and H. B. Gray

 1 g Li contains 9 × 1022 atoms…

 When a sample contains a very 
large number of Li atoms, the 
MOs (now called states) are so 
close in energy that they form a 
band of energy levels.

 A band is named for the AOs 
from which it was made       
(e.g. 2s band)

 The highest energy band 
containing electrons is the 
valence band.

 The lowest energy band with
empty spaces is the
conduction band.
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Band Theory for Metals (and Other Solids)

 In alkali metals, the valence s band is only half full.  
e.g. sodium (band structure shown at right)
 If there are N atoms of sodium in a sample, there

will be N electrons in 3s orbitals.
 There will be N states made from 3s orbitals, each

able to hold two electrons.  So, the band will have
space for 2N electrons (but only hold N electrons).  

 As such, N /2 states in the 3s band will be full 
and N /2 states will be empty (in ground state Na).

 Like all other alkali metals, sodium conducts
electricity well because the valence band is 
only half full.  It is therefore easy for electrons
in the valence band to be excited into empty 
higher energy states.

 Since these empty higher energy states are in the
same band, we can say that the valence band for
sodium is also the conduction band.
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Band Theory for Metals (and Other Solids)

 In an alkaline earth metal, the valence s band is full.  
e.g. beryllium (band structure shown at right)
 If there are N atoms of beryllium in a sample, there

will be 2N electrons in 2s orbitals.
 There will be N states made from 2s orbitals, each

able to hold two electrons. So, the band will have
exactly enough space for the 2N electrons. 

 As such, all states in the 2s band will be full and
none will be empty (in ground state Be).

 So, why are alkaline earth metals conductors?
 While the 2s band in beryllium is full, it overlaps 

with the 2p band. (Recall the energy level diagram
on p.9 of Homonuclear Diatomics notes showed
that valence s and p AOs of metals were close.)

 As such, some electrons in the valence band 
can easily be excited into the conduction band.

 In beryllium, the conduction band (band containing 
the lowest energy empty states) is the 2p band.
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Band Theory for Metals (and Other Solids)

 What do the bands look like for something that doesn’t 
conduct electricity?  i.e. for an insulator
e.g. diamond (band structure shown at right)
 If there are N atoms of carbon in a sample,

there will be 4N valence electrons.
 The valence orbitals of the carbon atoms 

combine to make two bands, each
containing 2N states.

 The lower energy band will therefore be
the valence band, containing 4N electrons
(in ground state diamond).

 The higher energy band will be the 
conduction band, containing no electrons
(in ground state diamond).

 The energy gap between the valence band
and the conduction band is big enough that
it would be difficult for an electron in the
valence band to absorb enough energy to 
be excited into the conduction band.
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Band Theory for Metals (and Other Solids)

 So, how big does a band gap have to be for a material to be 
an insulator?
 Our measuring stick is the temperature-dependent kB·T

 kB is the Boltzmann constant: 1.38065 × 10-23 J/K
 T is the temperature in Kelvin

 kB·T is a measure of the average thermal energy of particles in a 
sample

 As a rule of thumb:
 If the size of the band gap is much larger than kB·T, you 

have an insulator.  e.g. diamond: ~200×kB·T
 If the size of the band gap is smaller than (or close to) kB·T, 

you have a conductor.  e.g. sodium: 0×kB·T, tin: 3×kB·T 
 If the size of the band gap is about ten times larger than 

kB·T, you have a semiconductor.  e.g. silicon: ~50×kB·T 
 Band gaps can be measured by spectroscopy.  The lowest 

energy light to be absorbed corresponds to the band gap.
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Band Theory for Metals (and Other Solids)

 There are two broad categories of semiconductors:
 Intrinsic Semiconductors

 Naturally have a moderate band gap.  A small fraction of the 
electrons in the valence band can be excited into the 
conduction band.  They can carry current.  

 The “holes” these electrons leave in the valence band can 
also carry current as other electrons in the valence band can 
be excited into them.

 Extrinsic Semiconductors
 Have had impurities added in order to increase the amount 

of current they can conduct.  (impurities called dopants; 
process called doping)

 The dopants can *either* provide extra electrons *or* 
provide extra holes:

 A semiconductor doped to have extra electrons is an   
n-type semiconductor (‘n’ is for ‘negative’) 

 A semiconductor doped to have extra holes is a                 
p-type semiconductor (‘p’ is for ‘positive’)
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Band Theory for Metals (and Other Solids)

 How does an n-type semiconductor work?
e.g. silicon ([Ne]3s 23p 2) is doped with phosphorus ([Ne]3s 23p 3)
 In silicon, the valence band is completely full and the conduction 

band is completely empty.
 The phosphorus provides an additional band that is higher in energy 

than the valence band of silicon and which contains electrons.  
Electrons in this donor band are more easily excited into the 
conduction band (compared to those in the valence band of silicon).
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Band Theory for Metals (and Other Solids)

 How does a p-type semiconductor work?
e.g. silicon ([Ne]3s 23p 2) is doped with aluminium ([Ne]3s 23p 1) 
 In silicon, the valence band is completely full and the conduction 

band is completely empty.
 The aluminium provides an additional empty band that is lower in 

energy than the conduction band of silicon.  Electrons in the valence 
band of silicon are more easily excited into this acceptor band
(compared to the conduction band of silicon), creating “holes” 
(empty states) in the valence band.
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Band Theory for Metals (and Other Solids)

 Through careful choice of both dopant and concentration, the 
conductivity of a semiconductor can be fine-tuned.  There are 
many applications of semiconductors and doping in electronics.

 e.g. Diodes
 An n-type and a p-type semiconductor are connected.
 The acceptor band in the p-type semiconductor gets filled with the 

extra electrons from the n-type semiconductor.  The extra holes from 
the p-type semiconductor thus “move” to the n-type semiconductor.

 With negative charge moving one way and positive charge the other, 
charge separation builds up and stops both electrons and holes
from moving *unless* the diode is connected 
to a circuit:
 If a diode is connected such that the 

electrons flow into the n-type 
semiconductor, that replenishes the 
electrons there and current can flow.

 If a diode is connected such that the 
electrons flow into the p-type 
semiconductor, electrons will pile up 
there and the current will stop.
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Band Theory for Metals (and Other Solids)

 In a photodiode, the p-type semiconductor is exposed to light.  This 
can excite electrons from the former acceptor band into the 
conduction band.  They are then attracted to the neighbouring       
n-type semiconductor (which has built up a slight positive charge).  
This causes current to flow, and is how many solar cells work.
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