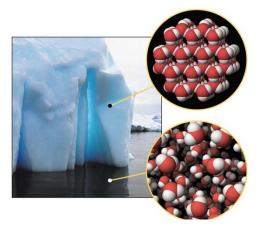

Reduction of an ion containing vanadium(V) with zinc metal With time the blue VO2* ion Finally, green V3+ ion is The yellow color of the VO2* Zn added. With time the reduced to violet V2+ ion. ion in acid solution. yellow VO2* ion is reduced is further reduced to green to blue VO2+ ion. V3+ ion. Add Zn V02+ V02+ V3+ © 2003 Thomson - Brooks/Cole © 2003 Thomson - Brooks/Cole


CHEMISTRY 2000

Topic #2: Thermochemistry and Electrochemistry –

What Makes Reactions Go?

Fall 2020 Dr. Susan Findlay See Exercises 7.1 to 7.5

 $Q = \frac{\text{product of activities of products}}{\text{product of activities of reactants}}$

and K

 $K = \frac{\text{product of activities of products}}{\text{product of activities of reactants}}$

So, what's the difference?

Q vs. K

• When does Q = K?

• When is Q < K?

• When is Q > K?

 We saw that the free energy change for a reaction under any conditions (Δ_rG) can be calculated from the free energy change of the same reaction under standard conditions (Δ_rG°):

$$\Delta_r G = \Delta_r G^\circ + RT \ln Q$$

where Q is the reaction quotient:

 $Q = \frac{\text{product of activities of products}}{\text{product of activities of reactants}}$

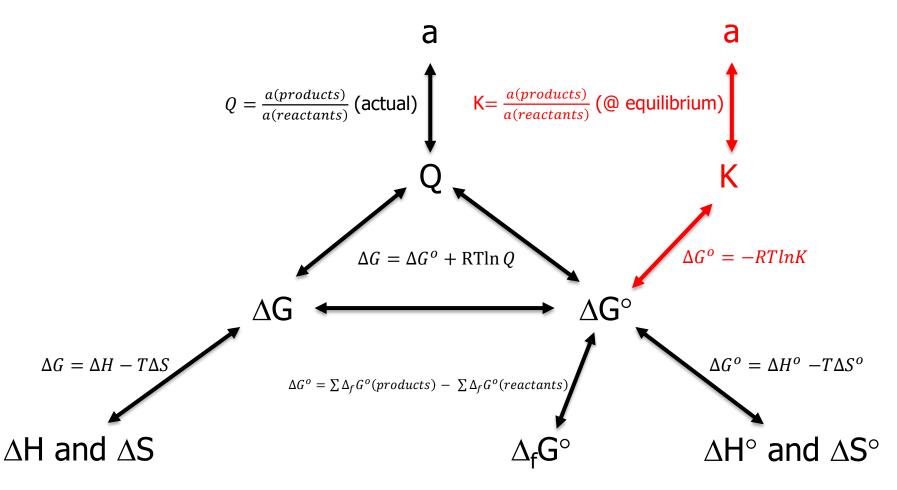
- We also know that:
 - The forward reaction is spontaneous if _____
 - The <u>reverse</u> reaction is spontaneous if _____
- What if $\Delta_r G = 0$?

• When $\Delta_r G = 0$, we can say that:

Which rearranges to give:

But what is Q at equilibrium?

• So, we can say that:


 So, if we know the equilibrium constant for a reaction, we can calculate its standard free energy change:

$$\Delta_r G^\circ = -RT \ln K$$

 And if we know the standard free energy change for a reaction, we can also calculate its equilibrium constant:

Note that these equations refer to $\Delta_r G^\circ$ (for <u>standard conditions</u>) NOT to $\Delta_r G$ (which is ZERO at equilibrium!) 5

• We can add these relationships to our equation map:

Now, consider a real reaction, the dimerization of NO₂:

$$2 \operatorname{NO}_{2(g)} \Longrightarrow \operatorname{N}_2 \operatorname{O}_{4(g)}$$

Calculate the equilibrium constant for this reaction at 25 °C.

$$\Delta_{\rm f}G^{\circ}(NO_{2(g)}) = 51.31 \frac{kJ}{mol}$$
$$\Delta_{\rm f}G^{\circ}(N_2O_{4(g)}) = 97.89 \frac{kJ}{mol}$$

Is the dimerization of NO₂ spontaneous at 25 °C if the partial pressure of NO₂ is 0.4 bar and the partial pressure of N₂O₄ is 1.8 bar?

The acid ionization constant, K_a, is the equilibrium constant for the reaction in which an acid ionizes. As an equilibrium constant (and therefore based on activities), K_a has no units.

e.g.
$$HF_{(aq)} \iff H^{+}_{(aq)} + F^{-}_{(aq)}$$
 $K_{a} = 6.6 \times 10^{-4}$

• In CHEM 1000, we used pK_a as a measure of strength of an acid. An acid with a low pK_a was ______ than an acid with a high pK_a . The pK_a value for an acid comes from its acid ionization constant:

$$pK_a = -\log K_a$$

So, we can also say that an acid will be ______ than another acid whose K_a value is smaller. (Even a "big" K_a value is pretty small. K_a values range from about 10⁻⁵⁰ to 10¹⁰.)

Calculate the standard molar free energy of formation for HF_(aq).

$$HF_{(aq)} \longrightarrow H^{+}_{(aq)} + F^{-}_{(aq)} \qquad K_{a} = 6.6 \times 10^{-4}$$

$$\Delta_{\rm f}G^{\circ}(H^+_{(aq)}) = 0\frac{kJ}{mol}$$
$$\Delta_{\rm f}G^{\circ}(F^-_{(aq)}) = -278.8\frac{kJ}{mol}$$