

CHEMISTRY 2000

Topic #3: Organic Chemistry Fall 2020 Dr. Susan Findlay See Exercises in Topic 12

Measuring Strength of Acids

- When you hear the term "organic acid", it usually refers to a carboxylic acid.
- Carboxylic acids are readily deprotonated by strong bases:

- This reaction is favoured in the forward direction because the products are lower in energy than the reactants.
 - In particular, the conjugate base (acetate; CH₃CO₂⁻) is much more stable than the original base (hydroxide, OH⁻).
 - Therefore, acetate is a weaker base than hydroxide.
 - Therefore, acetic acid is a stronger acid than water.

Measuring Strength of Acids

- An acid's strength depends on the stability of its conjugate base:
 - The conjugate base of *HCl* (a strong acid; *pK_a* = −7) is *Cl[−]* (a very weak base)
 - The conjugate base of H₂O (a weak acid; pK_a = 14) is OH⁻ (a relatively strong base)

The strength of an acid can therefore be said to be inversely related to the strength of its conjugate base *(and vice versa).*

• Why is $CH_3CO_2^-$ more stable than OH^- ?

Measuring Strength of Acids-

- Consider the reaction below.
 - Identify the acid, base, conjugate acid and conjugate base.
 - Is this reaction product-favoured or reactant-favoured?
 - The pK_a of CH_3CO_2H is 5.
 - The pK_a of H_20 is 14.
 - The pK_a of H_3O^+ is 0.

Measuring Strength of Acids

• The reaction on the previous page is equivalent to the acid dissociation equation for CH_3CO_2H (as long as the solution is sufficiently dilute that $X_{H_2O} \approx 1$):

$$CH_3CO_2H_{(aq)} \longrightarrow CH_3CO_2^{-}(aq) + H^+_{(aq)}$$

• Its equilibrium constant is therefore the K_a for CH_3CO_2H :

• Recall that we can relate the K_a and pK_a for an acid via the following equation:

An acid is stronger if it has a large K_a and a small pK_a. 5

- We can increase the strength of an acid by adding electronwithdrawing groups, further stabilizing its conjugate base.
- To increase the acidity of acetic acid, replace one or more hydrogen atoms attached to carbon with halogens:

 This stabilization through σ bonds is called an inductive effect. Inductive effects are only meaningful when the electron withdrawing group is within a few bonds of the acidic hydrogen.

- Carboxylic acids are among the most acidic organic molecules; however, a number of other functional groups contain acidic hydrogen atoms:
 - Alcohols are typically about as acidic as water. Most have *pK_a* values of ~15-18. (Inductive effects can lower these values to ~12)
 - Phenols are typically more acidic than alcohols. Most have pK_a values of ~8-10. (The pK_a can go as low as 1 with the right groups attached to the aromatic ring)
 - Thiols (R-SH) are also typically more acidic than alcohols. Most have *pK_a* values of ~10-12. (Also subject to inductive effects)
 - Amines are not acidic in water, but can be deprotonated by some *very* strong bases in unreactive solvents like alkanes or ethers. Their *pK_a* values are typically ~35-40!

Sulfur and nitrogen are both less electronegative than oxygen.
Why are thiols more acidic than alcohols, but amines less acidic?

Phenol is "just an alcohol with a benzene ring". Why is phenol more acidic than most non-aromatic alcohols?

• A strong acid $(pK_a < 0)$ dissociates fully in water because it is a stronger acid than H_3O^+ $(pK_a = 0)$ so reacts fully with H_2O to generate H_3O^+ and its conjugate base.

- This effect is known as **solvent leveling**.
 - No acid stronger than the conjugate acid of the solvent can exist in any solution.
 - No base stronger than the conjugate base of the solvent can exist in any solution. (Hydroxide isn't the strongest base – not by a long shot! It's just the strongest base that can exist in water.)

- Weak acids aren't subject to solvent leveling, so we must perform equilibrium calculations (ICE table) if we want to calculate pH of a solution of weak acid.
- We can often simplify the math by making assumptions:
 - If we have a relatively concentrated solution of a relatively weak acid, only a small percentage of the acid will dissociate so the equilibrium activity of *HA* will be very close to the initial activity. Assume this when $a_{HA} \gg K_a$.
 - You have likely been taught to treat the initial concentration of H^+ in water as zero. It's not. At 25 °C, it's $10^{-7}M$. You can often assume that the initial concentration of H^+ will be negligible but not when working with very dilute solutions or very weak acids. You can assume that initial concentration of H^+ is negligible when $a_{HA} \cdot K_a \gg K_w$.

ALWAYS CHECK ASSUMPTIONS AFTER CALCULATING!!!

• Calculate the pH of a 0.32 M solution of phenol ($pK_a = 9.95$) at 25 °C.

• Calculate the pH of a $4.2 \times 10^{-5}M$ solution of CH₃CO₂H ($pK_a = 4.74$) at 25 °C.

- We can also work backwards, using the K_a equation to work out the percent dissociation of an acid at a given pH.
- The *pH* tells us the activity (and therefore the concentration) of *H*⁺_(aq) so, as long as we know the *K_a* value for the acid, we're set.

$$K_a = \frac{a_{H^+} \cdot a_{A^-}}{a_{HA}}$$
 so $\frac{K_a}{a_{H^+}} = \frac{a_{A^-}}{a_{HA}}$

• Calculate the percent dissociation of acetic acid $(pK_a = 4.74)$ at pH 4.00.

If we repeat this calculation at a large number of different *pH* values, we generate what is known as a distribution curve:

Note that the two curves cross at the pK_a of the acid! The pK_a of an acid is the pH at which it is exactly 50% dissociated. 18

• We can see why an acid will be 50% dissociated at its pK_a if we take the negative logarithm of both sides of the K_a expression:

$$-\log(K_a) = -\log\left(\frac{a_{H^+} \cdot a_{A^-}}{a_{HA}}\right)$$

$$-\log(K_a) = -\log(a_{H^+}) - \log\left(\frac{a_{A^-}}{a_{HA}}\right)$$

$$pK_a = pH - \log\left(\frac{a_{A^-}}{a_{HA}}\right)$$

$$pK_a + \log\left(\frac{a_{A^-}}{a_{HA}}\right) = pH$$

• This is the **Henderson-Hasselbalch equation**. We can see that if $\frac{a_{A^{-}}}{a_{HA}} = 1$ then $\log\left(\frac{a_{A^{-}}}{a_{HA}}\right) = 0$ and $pH = pK_a$. As the acid's percent dissociation rises, so does the pH and vice versa.

Distribution Curves for Polyprotic Acids

 If an acid has multiple acidic protons whose pK_a values are different by several units, the distribution curve will look like several monoprotic distribution curves superimposed:

If the pK_a values are too close, the distribution curve will become more complex. 20

Organic Bases (Amines)

- When you hear the term "organic base", it's generally referring to an amine.
- Amines are readily protonated by strong acids:

The basicity of amines is due to the lone pair on the nitrogen atom which makes all amines (R = H, alkyl or combination) both Lewis bases and Brønsted bases.

Organic Bases (Amines)

We have seen one other functional group containing nitrogen.
Why is an amine considered a good base, but an amide is not?

The nitrogen atom of an amide is so weakly basic that the oxygen of the carbonyl group will be protonated over it!

Measuring Strength of Bases

- We can measure a base's strength using either of two measures:
 - We can refer to the K_a (or pK_a) of the conjugate acid. Since the strength of a base is inversely related to the strength of its conjugate acid, we can deduce the strength of a base from the strength of its conjugate acid.

Measuring Strength of Bases

Alternatively, we can refer to the K_b (or pK_b) of the base itself.
This is the equilibrium constant for reaction of the base with water:

- -

Measuring Strength of Bases

• K_b is inversely proportional to K_a for the conjugate acid:

$$K_a = \frac{K_w}{K_b}$$
 or $K_a \cdot K_b = K_w$

where $K_w = 10^{-14}$ at 25 °C.

• We can also say that $pK_a + pK_b = pK_w$. At 25 °C, $pK_w = 14$.

Larger K_b = Smaller pK_b = Stronger Base

• The pK_a of aniline $(C_6H_5NH_2)$ is 28. The pK_a of $C_6H_5NH_3^+$ is 4. What are the K_b and pK_b values for aniline?

- We can calculate the *pH* of a solution of weak base by:
 - Using the K_b expression and nominal solution concentration to calculate a_{OH^-} then
 - Using the K_w expression ($K_w = a_{H^+} \cdot a_{OH^-}$) to calculate a_{H^+} then
 - Using a_{H^+} to calculate pH.

Recall that, at 25 °C, $K_w = 10^{-14}$.

• Calculate the *pH* of a 0.71 *M* aqueous solution of aniline at 25 °C.

Amino Acids: Acid and Base

Some textbooks present the structure of an amino acid as follows

in order to show that the name comes from having an **amine** group and a carboxylic **acid** group.

• This is not how an amino acid actually exists in biological systems (or other $pH \approx 7$ solution). Instead, it exists as the **zwitterion**:

Amino Acids: Acid and Base

- Why is this?
 - The *pK_a* for the −*CO₂H* proton is typically ~2 (slightly lower than the standard 3-5 range for carboxylic acids).
 - The pK_a for the conjugate acid of the amine group (i.e. for the $-NH_3^+$ proton) is typically ~9-10.
- Use this data to sketch a distribution curve for the amino acid, labeling with the major species within each pH range.