

CHEMISTRY 2000

Topic \#3: Organic Chemistry Fall 2020
Dr. Susan Findlay See Exercises in Topic 12

Measuring Strength of Acids

- When you hear the term "organic acid", it usually refers to a carboxylic acid.
- Carboxylic acids are readily deprotonated by strong bases:

- This reaction is favoured in the forward direction because the products are lower in energy than the reactants.
- In particular, the conjugate base (acetate; $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$) is much more stable than the original base (hydroxide, OH^{-}).
- Therefore, acetate is a weaker base than hydroxide.
- Therefore, acetic acid is a stronger acid than water.

Measuring Strength of Acids

- An acid's strength depends on the stability of its conjugate base:
- The conjugate base of HCl (a strong acid; $p K_{a}=-7$) is Cl^{-} (a very weak base)
- The conjugate base of $\mathrm{H}_{2} \mathrm{O}$ (a weak acid; $p K_{a}=14$) is OH^{-} (a relatively strong base)
The strength of an acid can therefore be said to be inversely related to the strength of its conjugate base (and vice versa).
- Why is $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$more stable than OH^{-}?

Measuring Strength of Acids-

- Consider the reaction below.
- Identify the acid, base, conjugate acid and conjugate base.
- Is this reaction product-favoured or reactant-favoured?
- The $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is 5 .
- The $p K_{a}$ of $\mathrm{H}_{2} \mathrm{O}$ is 14 .
- The $p K_{a}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$is 0 .

Measuring Strength of Acids

- The reaction on the previous page is equivalent to the acid dissociation equation for $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (as long as the solution is sufficiently dilute that $\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}} \approx 1$):

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2-(\mathrm{aq})}^{-} \quad+\mathrm{H}^{+}(\mathrm{aq})
$$

- Its equilibrium constant is therefore the K_{a} for $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$:
- Recall that we can relate the K_{a} and $p K_{a}$ for an acid via the following equation:
- An acid is stronger if it has a large K_{a} and a small $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$. $\quad 5$

Factors Affecting Strength of Acids

- We can increase the strength of an acid by adding electronwithdrawing groups, further stabilizing its conjugate base.
- To increase the acidity of acetic acid, replace one or more hydrogen atoms attached to carbon with halogens:

$\mathrm{pK}_{\mathrm{a}}=4.74$

$\mathrm{pK}_{\mathrm{a}}=2.66$

$\mathrm{pK}_{\mathrm{a}}=1.24$

$\mathrm{pK}_{\mathrm{a}}=0.23$
- This stabilization through σ bonds is called an inductive effect. Inductive effects are only meaningful when the electron withdrawing group is within a few bonds of the acidic hydrogen.

Factors Affecting Strength of Acids

- Carboxylic acids are among the most acidic organic molecules; however, a number of other functional groups contain acidic hydrogen atoms:
- Alcohols are typically about as acidic as water. Most have $p K_{a}$ values of $\sim 15-18$. (Inductive effects can lower these values to ~ 12)
- Phenols are typically more acidic than alcohols. Most have $p K_{a}$ values of ~ 8-10. (The $p K_{a}$ can go as low as 1 with the right groups attached to the aromatic ring)
- Thiols (R-SH) are also typically more acidic than alcohols. Most have $p K_{a}$ values of $\sim 10-12$. (Also subject to inductive effects)
- Amines are not acidic in water, but can be deprotonated by some *very* strong bases in unreactive solvents like alkanes or ethers. Their $p K_{a}$ values are typically $\sim 35-40$!

Factors Affecting Strength of Acids

- Sulfur and nitrogen are both less electronegative than oxygen. Why are thiols more acidic than alcohols, but amines less acidic?

Factors Affecting Strength of Acids

- Phenol is "just an alcohol with a benzene ring". Why is phenol more acidic than most non-aromatic alcohols?

Calculating pH of an Acidic Solution

- A strong acid ($p K_{a}<0$) dissociates fully in water because it is a stronger acid than $\mathrm{H}_{3} \mathrm{O}^{+}\left(p K_{a}=0\right)$ so reacts fully with $\mathrm{H}_{2} \mathrm{O}$ to generate $\mathrm{H}_{3} \mathrm{O}^{+}$and its conjugate base.
- This effect is known as solvent leveling.
- No acid stronger than the conjugate acid of the solvent can exist in any solution.
- No base stronger than the conjugate base of the solvent can exist in any solution. (Hydroxide isn't the strongest base - not by a long shot! It's just the strongest base that can exist in water.)

Calculating pH of an Acidic Solution

- Weak acids aren't subject to solvent leveling, so we must perform equilibrium calculations (ICE table) if we want to calculate pH of a solution of weak acid.
- We can often simplify the math by making assumptions:
- If we have a relatively concentrated solution of a relatively weak acid, only a small percentage of the acid will dissociate so the equilibrium activity of $H A$ will be very close to the initial activity. Assume this when $a_{H A}>K_{a}$.
- You have likely been taught to treat the initial concentration of H^{+} in water as zero. It's not. At $25^{\circ} \mathrm{C}$, it's $10^{-7} \mathrm{M}$. You can often assume that the initial concentration of H^{+}will be negligible - but not when working with very dilute solutions or very weak acids. You can assume that initial concentration of H^{+}is negligible when $a_{H A} \cdot K_{a} \gg K_{w}$.

Calculating pH of an Acidic Solution

- Calculate the $p H$ of a 0.32 M solution of phenol $\left(p K_{a}=9.95\right)$ at $25^{\circ} \mathrm{C}$.

Calculating pH of an Acidic Solution

Calculating pH of an Acidic Solution

- Calculate the pH of a $4.2 \times 10^{-5} \mathrm{M}$ solution of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($p K_{a}=4.74$) at $25^{\circ} \mathrm{C}$.

Calculating pH of an Acidic Solution

Distribution Curves

- We can also work backwards, using the K_{a} equation to work out the percent dissociation of an acid at a given $p H$.
- The $p H$ tells us the activity (and therefore the concentration) of $H_{(a q)}^{+}$so, as long as we know the K_{a} value for the acid, we're set.

$$
K_{a}=\frac{a_{H^{+}} \cdot a_{A^{-}}}{a_{H A}} \quad \text { so } \quad \frac{K_{a}}{a_{H^{+}}}=\frac{a_{A^{-}}}{a_{H A}}
$$

Distribution Curves

- Calculate the percent dissociation of acetic acid $\left(p K_{a}=4.74\right)$ at pH 4.00.

Distribution Curves

- If we repeat this calculation at a large number of different $p H$ values, we generate what is known as a distribution curve:

Note that the two curves cross at the $p K_{a}$ of the acid! The $p K_{a}$ of an acid is the $p H$ at which it is exactly 50% dissociated.

Distribution Curves

- We can see why an acid will be 50% dissociated at its $p K_{a}$ if we take the negative logarithm of both sides of the K_{a} expression:

$$
\begin{aligned}
-\log \left(K_{a}\right) & =-\log \left(\frac{a_{H^{+}} \cdot a_{A^{-}}}{a_{H A}}\right) \\
-\log \left(K_{a}\right) & =-\log \left(a_{H^{+}}\right)-\log \left(\frac{a_{A^{-}}}{a_{H A}}\right) \\
p K_{a} & =p H-\log \left(\frac{a_{A^{-}}}{a_{H A}}\right) \\
p K_{a}+\log \left(\frac{a_{A^{-}}}{a_{H A}}\right) & =p H
\end{aligned}
$$

- This is the Henderson-Hasselbalch equation. We can see that if $\frac{a_{A^{-}}}{a_{H A}}=1$ then $\log \left(\frac{a_{A^{-}}}{a_{H A}}\right)=0$ and $p H=p K_{a}$. As the acid's percent dissociation rises, so does the $p H$ and vice versa.

Distribution Curves for Polyprotic Acids

- If an acid has multiple acidic protons whose $p K_{a}$ values are different by several units, the distribution curve will look like several monoprotic distribution curves superimposed:

If the $p K_{a}$ values are too close, the distribution curve will become more complex.

Organic Bases (Amines)

- When you hear the term "organic base", it's generally referring to an amine.
- Amines are readily protonated by strong acids:

- The basicity of amines is due to the lone pair on the nitrogen atom which makes all amines ($\mathrm{R}=\mathrm{H}$, alkyl or combination) both Lewis bases and Brønsted bases.

Organic Bases (Amines)

- We have seen one other functional group containing nitrogen. Why is an amine considered a good base, but an amide is not?
- The nitrogen atom of an amide is so weakly basic that the oxygen of the carbonyl group will be protonated over it!

Measuring Strength of Bases

- We can measure a base's strength using either of two measures:
- We can refer to the K_{a} (or $p K_{a}$) of the conjugate acid. Since the strength of a base is inversely related to the strength of its conjugate acid, we can deduce the strength of a base from the strength of its conjugate acid.

$\mathrm{pK}_{\mathrm{a}}=9.3$

$\mathrm{pK}_{\mathrm{a}}=10.6$

Smaller $p K_{a}$ for Conjugate Acid

 =Stronger Conjugate Acid

$$
=
$$

Weaker Base

Measuring Strength of Bases

- Alternatively, we can refer to the K_{b} (or $p K_{b}$) of the base itself. This is the equilibrium constant for reaction of the base with water:

Measuring Strength of Bases

- K_{b} is inversely proportional to K_{a} for the conjugate acid:

$$
K_{a}=\frac{K_{w}}{K_{b}} \quad \text { or } \quad K_{a} \cdot K_{b}=K_{w}
$$

where $K_{w}=10^{-14}$ at $25^{\circ} \mathrm{C}$.

- We can also say that $p K_{a}+p K_{b}=p K_{w}$. At $25^{\circ} \mathrm{C}, p K_{w}=14$.

Larger $K_{b}=$ Smaller $p K_{b}=$ Stronger Base

Calculating pH of a Basic Solution

- The $p K_{a}$ of aniline $\left(C_{6} H_{5} \mathrm{NH}_{2}\right)$ is 28. The $p K_{a}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$is 4 . What are the K_{b} and $p K_{b}$ values for aniline?

Calculating pH of a Basic Solution

- We can calculate the $p H$ of a solution of weak base by:
- Using the K_{b} expression and nominal solution concentration to calculate $a_{O H^{-}}$then
- Using the K_{w} expression ($K_{w}=a_{H^{+}} \cdot a_{O H^{-}}$) to calculate $a_{H^{+}}$then
- Using $a_{H^{+}}$to calculate pH .

Recall that, at $25^{\circ} \mathrm{C}, K_{w}=10^{-14}$.

Calculating pH of a Basic Solution

- Calculate the $p H$ of a 0.71 M aqueous solution of aniline at $25^{\circ} \mathrm{C}$.

Calculating pH of a Basic Solution

Amino Acids: Acid and Base

- Some textbooks present the structure of an amino acid as follows

in order to show that the name comes from having an amine group and a carboxylic acid group.
- This is not how an amino acid actually exists in biological systems (or other $p H \approx 7$ solution). Instead, it exists as the zwitterion:

Amino Acids: Acid and Base

- Why is this?
- The $p K_{a}$ for the $-\mathrm{CO}_{2} \mathrm{H}$ proton is typically ~ 2 (slightly lower than the standard 3-5 range for carboxylic acids).
- The $p K_{a}$ for the conjugate acid of the amine group (i.e. for the $-N H_{3}^{+}$proton) is typically $\sim 9-10$.
- Use this data to sketch a distribution curve for the amino acid, labeling with the major species within each pH range.

