Practice Test Questions 2 Molecular Orbital Theory: Homonuclear Diatomic Molecules

- 1. Draw the potential energy curve for a diatomic molecule. Clearly label the bond dissociation energy and equilibrium bond length on your drawing.
- 2. Two 3*d* orbitals can overlap in either a σ fashion or in a π fashion.
- (a) Show how two 3*d* orbitals can have σ overlap. Draw the resulting molecular orbitals.
- (b) Show how two 3*d* orbitals can have π overlap. Draw the resulting molecular orbitals.
- 3. For a molecule of diatomic boron (B_2) , we define the bond as lying along the *z* axis.
- (a) Which valence atomic orbitals combine to form σ MOs in B_2 ? Be specific.
- (b) Which valence atomic orbitals combine to form π MOs in B_2 ? Be specific.
- (c) Draw a valence molecular orbital energy level diagram for B_2 . Label all orbitals.
- (d) Write the valence orbital occupancy for B_2 .
- (e) Is B_2 diamagnetic or paramagnetic? What does this mean?
- (f) What is the net σ bond order for B_2 ?
- (g) What is the net π bond order for B_2 ?
- (h) What is the overall bond order for B_2 ?
- 4. The bond dissociation enthalpies for N_2 and N_2^- are 945 kJ/mol and 765 kJ/mol respectively. There is only a small difference between the values for bond dissociation enthalpy and bond dissociation energy.

Using an argument based on molecular orbital theory, explain why N_2^- has a smaller bond dissociation energy than N_2 .

- (a) Draw Lewis diagrams for N_2^+ and N_2^- . What bond orders would you predict from the Lewis diagrams?
- (b) Determine the bond orders for these two ions using molecular orbital theory. Do they agree with the values obtained for your Lewis diagrams?
- 6. When drawing Lewis diagrams, we ignore the core electrons and focus only on the valence electrons. Discuss how molecular orbital theory provides support for this practice.

^{5.}

- 7. Use molecular orbital theory to describe the bonding in diatomic oxygen (O_2) .
- (a) Complete the valence molecular orbital energy level diagram below by:
 - i. drawing <u>and</u> naming the atomic orbitals,
 - ii. drawing <u>and</u> naming the molecular orbitals, and
 - iii. adding electrons to the atomic <u>and</u> molecular orbitals

- (b) Write the valence orbital occupancy (i.e. electron configuration) for O_2
- (c) Draw a Lewis diagram for O_2 .
- (d) What property of oxygen is clearly shown by the molecular orbital energy level diagram but not by the Lewis diagram?
- (e) When O_2 reacts with sodium metal, the peroxide anion is generated (O_2^{2-}) :

$$2Na(s) + O_2(g) \rightarrow Na_2O_2(s)$$

Draw a Lewis diagram for the peroxide anion $(O_2^{2^-})$ and use your MO diagram to help you describe what is happening in the above reaction. Make sure you rationalize the main difference(s) between your Lewis diagram for O_2 and your Lewis diagram for $O_2^{2^-}$.

- 8. Calcium carbide, CaC₂, is a reactive salt used in a number of industrial processes including the production of acetylene. Use molecular orbital theory to describe the bonding of the carbide anion $(C_2^{2^-})$.
- (a) Complete the valence molecular orbital energy level diagram below by:
 - i. drawing <u>and</u> naming the atomic orbitals,
 - ii. drawing *and* naming the molecular orbitals, and
 - iii. populating the atomic and molecular orbitals with electrons

- (b) Write the valence orbital occupancy (i.e. electron configuration) for C_2^{2-} .
- (c) Would you expect the carbide anion to have a larger or smaller bond dissociation energy than C_2 ? Justify your answer.
- (d) Give formulas for two neutral diatomic molecules that are isoelectronic with $C_2^{2^-}$.