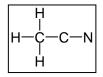

Practice Test Questions 5B Valence Bond Theory

1. The molecule below is ascorbic acid, more commonly known as Vitamin C. Consider this molecule according to valence bond theory.

- (a) Complete the Lewis structure by adding all missing lone pairs of electrons.
- (b) Name the hybrid orbital set used by each of the three atoms identified by arrows. Also, indicate the number of unhybridized 2*p* orbitals remaining on each of these atoms. *Answer in the boxes provided.*
- (c) How many σ bonds are there in one molecule of ascorbic acid?
- (d) How many π bonds are there in one molecule of ascorbic acid?


- (a) Draw the best Lewis structure for acetyl chloride.
- (b) Indicate the molecular geometry at each central atom.
 C (of CH₃) = _____ C (of COCl) = _____
- (c) What is the hybridization of the following atoms when VB theory is applied to acetyl chloride:

C (of CH₃) = _____ C (of COCl) = _____

- (d) How many sigma bonds are there in one molecule of acetyl chloride?
- (e) How many pi bonds are there in one molecule of acetyl chloride?

- 3. Acetonitrile (CH₃CN) has the connectivity shown:
- (a) Draw the best Lewis structure for acetonitrile.
- (b) Indicate the molecular geometry at each central atom.
 C (of CH₃) = _____ C (of CN) = _____
- (c) What is the hybridization of the following atoms when VB theory is applied to acetonitrile:
 C (of CH₃) = _____
 C (of CN) = _____
- (d) How many sigma bonds are there in one molecule of acetonitrile?
- (e) How many pi bonds are there in one molecule of acetonitrile?
- 4. Use diagram(s) to explain how *sp* orbitals are formed. *Clearly indicate the number, type and geometry of all orbitals involved.*
- 5. Use diagrams in your answers to the following questions.
- (a) What is the main difference between a hybrid atomic orbital and a molecular orbital?
- (b) What is the main difference between a σ bond and a π bond?
- 6. Briefly, explain why atomic orbitals in diatomic molecules are not typically hybridized.
- 7. Describe two key differences between molecular orbital theory and valence bond theory.
- 8. All pictures for this question must be drawn to show the molecule's three-dimensional shape. Use wedges and/or dashed lines as necessary.
- (a) Draw a molecule containing at least one carbon atom that would be considered sp^3 -hybridized according to valence bond theory. If your molecule contains more than one carbon atom, it must be clear which carbon atom(s) is/are sp^3 -hybridized.
- (b) Draw a molecule containing at least one carbon atom that would be considered sp^2 -hybridized according to valence bond theory. If your molecule contains more than one carbon atom, it must be clear which carbon atom(s) is/are sp^2 -hybridized.
- (c) Draw a molecule containing at least one carbon atom that would be considered *sp*-hybridized according to valence bond theory. If your molecule contains more than one carbon atom, it must be clear which carbon atom(s) is/are *sp*-hybridized.

- 9. Consider the bonding in HCN according to valence bond theory.
- (a) Draw a Lewis structure for HCN.
- (b) What is the hybridization of the carbon atom in HCN?
- (c) Clearly indicate <u>using a sketch of the sigma-framework</u> which atomic orbitals combine to make each σ bond in HCN. Include electron pairs and label each atomic or hybrid orbital clearly.
- (d) Clearly indicate <u>using a sketch of just the pi-network</u> which atomic orbitals combine to make each π bond in HCN. Include electron pairs and label each atomic or hybrid orbital clearly.
- 10. What structure is expected for $[H_2CCH_2]^{2+}$? Using a valence bond analysis, provide a concise, **clear answer** and make a clear sketch of the structure you suggest, using "wedges and dashes" notation.