Please note that we reviewed drawing resonance structures and calculating formal charge in the Topic 1 notes!

Ogilvie covers those topics in Chapter 5.

CHEMISTRY 2500

Topic #5: Organic Reaction Mechanisms
Spring 2020
Dr. Susan Findlay

Reaction Mechanisms and Curved Arrows

A reaction mechanism is a series of step(s) describing how a reaction proceeds. The movement of electrons in each step are shown using arrows commonly referred to as "curved arrows":

Each step in a reaction mechanism is referred to as an elementary process and can be imagined to proceed as the result of one collision between molecules (or as a single step involving only one molecule). As such, the electrons will appear to "flow" from one part of the system to another:

$$\begin{array}{c} \Theta \\ \vdots \\ O \\ \vdots \\ O \\ \end{array}$$

$$\begin{array}{c} C \\ C \\ \end{array}$$

Reaction Mechanisms and Curved Arrows

When drawing curved arrows, be careful whether they are pointing at an atom (indicating formation of a new bond to that atom where there was not previously a bond) or pointing at a bond (indicating that the order of that bond increases by 1).

Things That Are Essential to Remember!!!

- CURVED ARROWS <u>ALWAYS</u> SHOW MOVEMENT OF <u>ELECTRONS</u>.
 NEVER ATOMS OR IONS!
- Electrons flow in <u>ONE DIRECTION</u> from electron-rich to electron-poor; from base to acid; from <u>NUCLEOPHILE TO</u> <u>ELECTROPHILE</u>.
- Don't push multiple arrows into the same atom. One in; one out.
 (Often just "one in" or "one out".)
- Each arrow represents the movement of a PAIR* of electrons.
- When pushing electrons, remember that period 2 elements (including C, N and O) can <u>NEVER</u> have more than 8 electrons!!!

^{*} To show movement of single electrons, chemists use half-arrows.

Curved Arrows and Formal Charge

Consider an elementary step in which a single curved arrow shows the formation of one bond. What happens to the formal charge on the atoms at each end of the arrow?

Curved Arrows and Formal Charge

Consider an elementary step in which a single curved arrow shows the breaking of one bond. What happens to the formal charge on the atoms at each end of the arrow?

Curved Arrows and Intermolecular Reactions

 Many elementary steps involve the movement of more than one pair of electrons. Use the curved arrows to identify the product(s) of each elementary step below.

 These are <u>intermolecular</u> reactions – reactions "between different molecules".

Curved Arrows and Intramolecular Reactions

- In some reactions, the atom donating an electron pair and the atom accepting it are in the same molecule. These are <u>intramolecular</u> reactions – reactions "within a molecule".
- Use the curved arrows to identify the product(s) of each elementary step below.

Notice anything about the two examples above?

Drawing Curved Arrows

 The reactants and products are shown for the following elementary steps. Add the curved arrows to show the movement of electrons.

Hint: Start by identifying which electrons move ...