Ogilvie covers those topics in Chapter 5.

CHEMISTRY 2500

Topic \#5: Organic Reaction Mechanisms Spring 2020
Dr. Susan Findlay

Reaction Mechanisms and Curved Arrows

- A reaction mechanism is a series of step(s) describing how a reaction proceeds. The movement of electrons in each step are shown using arrows commonly referred to as "curved arrows":

- Each step in a reaction mechanism is referred to as an elementary process and can be imagined to proceed as the result of one collision between molecules (or as a single step involving only one molecule). As such, the electrons will appear to "flow" from one part of the system to another:

Reaction Mechanisms and Curved Arrows

- When drawing curved arrows, be careful whether they are pointing at an atom (indicating formation of a new bond to that atom where there was not previously a bond) or pointing at a bond (indicating that the order of that bond increases by 1).

Things That Are Essential to Remember!!!

- CURVED ARROWS ALWAYS SHOW MOVEMENT OF ELECTRONS. NEVER ATOMS OR IONS!
- Electrons flow in ONE DI RECTION - from electron-rich to electron-poor; from base to acid; from NUCLEOPHI LE TO ELECTROPHILE.
- Don't push multiple arrows into the same atom. One in; one out. (Often just "one in" or "one out".)
- Each arrow represents the movement of a PAI R* of electrons.
- When pushing electrons, remember that period 2 elements (including C, N and O) can NEVER have more than 8 electrons!!!
* To show movement of single electrons, chemists use half-arrows.

Curved Arrows and Formal Charge

- Consider an elementary step in which a single curved arrow shows the formation of one bond. What happens to the formal charge on the atoms at each end of the arrow?

Curved Arrows and Formal Charge

- Consider an elementary step in which a single curved arrow shows the breaking of one bond. What happens to the formal charge on the atoms at each end of the arrow?

\qquad

Curved Arrows and Intermolecular Reactions

- Many elementary steps involve the movement of more than one pair of electrons. Use the curved arrows to identify the product(s) of each elementary step below.

- These are intermolecular reactions - reactions "between different molecules".

Curved Arrows and Intramolecular Reactions

- In some reactions, the atom donating an electron pair and the atom accepting it are in the same molecule. These are intramolecular reactions - reactions "within a molecule".
- Use the curved arrows to identify the product(s) of each elementary step below.

Notice anything about the two examples above?

Drawing Curved Arrows

- The reactants and products are shown for the following elementary steps. Add the curved arrows to show the movement of electrons.

Hint: Start by identifying which electrons move...

