\qquad

Chemistry 1000 Practice Final Exam A
 Based on Fall 2009 Test (Content Updated to Fall 2017 Curriculum)

INSTRUCTIONS

1) Read the exam carefully before beginning. There are 19 questions on pages 2 to 12 followed by 2 pages of "Data Sheet" (including periodic table) and a blank page for any rough work. Please ensure that you have a complete exam. If not, let an invigilator know immediately. All pages must be submitted at the end of the exam.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) You may use a calculator.
5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
6) Marks will be deducted for improper use of significant figures and for numerical answers with incorrect/missing units.
7) Do not open the exam until you are told to begin. Beginning prematurely will result in removal of your exam paper and a mark of 0 .
8) You have $\mathbf{3}$ hours to complete this exam. Nobody may leave the exam room during the first hour or the last 15 minutes of the exam.

\mathbf{Q}	Mark
1	$/ 23$
2	$/ 3$
3	$/ 5$
4	$/ 3$
5	$/ 3$
6	$/ 2$
7	$/ 4$
8	$/ 3$
9	$/ 12$
10	$/ 2$

\mathbf{Q}	Mark
11	$/ 7$
12	$/ 9$
13	$/ 8$
14	$/ 3$
15	$/ 4$
16	$/ 10$
17	$/ 6$
18	$/ 2$
19	$/ 1$

Total	$/ 110$

Name: \qquad Student Number: \qquad

1. Fill in the blank(s).
(a) \qquad is an atomic property combining ionization energy and electron affinity.
(b) The alkaline earth metal with the smallest atomic radius is \qquad .
(c) The radioactive isotope of hydrogen is \qquad .
(d) Phosphorus has three major allotropes. Two of them are \qquad and \qquad .
(e) One allotrope of carbon that conducts electricity is \qquad .
(f) Aluminium oxide has the chemical formula \qquad . When aluminium oxide is reacted with hydroxide, an anion is formed which has the chemical formula \qquad .
(g) The only intermolecular force active in a nonpolar liquid is \qquad .
(h) Fluorine has only one isotope. Its mass number is \qquad .
(i) Which of the following ions give(s) a colourless solution: $\left[\mathrm{Ti}\left(\mathrm{OH}_{2}\right)_{6}\right]^{4+},\left[\mathrm{Mo}\left(\mathrm{OH}_{2}\right)_{6}\right]^{4+}$ or $\left[\mathrm{Mo}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$? \qquad
(j) The Pauli exclusion principle is a rule stating that \qquad
(k) The quantum number describing the shape of an orbital \qquad .
(l) The photoelectric effect demonstrated the \qquad nature of light.
(m) An isotope whose N / Z value is too high will most often undergo \qquad decay.
(n) A neutral atom of ${ }^{3}$ Hehas \qquad proton(s), \qquad electron(s) and \qquad neutron(s).
(o) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is named \qquad .
(p) A Gray is a unit used to measure \qquad .
(q) The halogen that is a solid at room temperature is \qquad .
(r) A molecule which has 'see saw' molecular geometry must have \qquad electron group geometry.
(s) $\mathrm{B}_{2} \mathrm{H}_{6}$ is an unusual molecule because \qquad .

Name: \qquad Student Number: \qquad
2. CoCO_{3} is used in pottery glazes. Dry CoCO_{3} consists of light red (pink) crystals.[3 marks]
(a) What is the IUPAC name for CoCO_{3} ?
(b) What colour of light is absorbed by dry CoCO_{3} ?
(c) CoCO_{3} reacts with acids. Write a balanced chemical equation for the reaction between CoCO_{3} and $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq)}$. Include states of matter.
[1 mark]
3. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a triprotic acid.
(a) What is the IUPAC name for $\mathrm{H}_{3} \mathrm{PO}_{4}$?
(b) Draw a valid Lewis diagram for $\mathrm{H}_{3} \mathrm{PO}_{4}$.
[2 marks] Include any non-zero formal charges on the appropriate atoms.
(c) Use your Lewis diagram to calculate an approximate pK_{a} for $\mathrm{H}_{3} \mathrm{PO}_{4}$.
[1 mark]
(d) According to the pK a you calculated, is $\mathrm{H}_{3} \mathrm{PO}_{4}$ best classified as a strong acid or a weak acid?
[1 mark]

Name: \qquad
\qquad
4. Write a balanced chemical equation for each of the following reactions.
(a) Sulfur reacts with chlorine to give disulfur dichloride.
(b) Lithium is combusted to give lithium oxide.
(c) Fluorine reacts with water to give hydrofluoric acid and oxygen.
5. Write a balanced chemical equation for each of the following reactions. Include states of matter for all reactants and products.
(a) Barium reacts with oxygen.
(b) Zinc reacts with hydrochloric acid.
(c) Potassium reacts with chlorine.
6.
(a) What is hard water?
(b) Briefly describe one method of softening water.

Name: \qquad Student Number: \qquad
7. Lead paint has been prominent in the news lately due to its toxicity. "Lead paint" is not lead metal. "Lead paint" refers to ionic compounds containing lead.
(a) What is the electron configuration for a neutral lead atom (Pb) ? [1 mark] Use the noble gas abbreviation.
(b) Lead can form two stable ions. What are their charges? Clearly explain your choices.
[3 marks]
8. Lead has the following isotopic composition:
[3 marks]

Isotope	Mass (u)	Abundance (\%)
${ }_{82}^{204} \mathrm{~Pb}$	203.973	1.4
${ }_{82}^{206} \mathrm{~Pb}$	205.974	24.1
${ }_{82}^{207} \mathrm{~Pb}$	206.976	22.1
${ }_{82}^{208} \mathrm{~Pb}$	207.977	52.4

(a) Calculate the average atomic mass for lead.
[2 marks]
(b) This average atomic mass can be used for calculations involving neutral lead atoms or for calculations involving lead ions. Why?

Name: \qquad Student Number: \qquad
9. Consider each of the following neutral elements:

- an s-block element of the $6^{\text {th }}$ period with 1 valence electron
- a p-block element of the $3^{\text {rd }}$ period with 5 valence electrons
- a d-block element of the $4^{\text {th }}$ period with 4 valence electrons

In the table below, identify each element, sketch a picture of an orbital in which the highest energy electron could be found and provide a valid set of quantum numbers for that highest energy electron.
[12 marks]

| element description | element
 symbol and name
 sketch of orbital containing
 highest energy electron
 (include labeled axes!) | \boldsymbol{n} | \boldsymbol{I} | $\boldsymbol{m}_{\boldsymbol{I}}$ | $\boldsymbol{m}_{\boldsymbol{s}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| s-block element in $6^{\text {th }}$ period;
 1 valence electron | | | | | |
| p-block element in $3^{\text {rd }}$ period;
 5 valence electrons | | | | | |
| d-block element in 4 th
 4 valence electrons | | | | | |

10. The ionic radius of K^{+}is 133 pm while the ionic radius of Cu^{+}is 96 pm . Explain why the radius of Cu^{+}is smaller than that of K^{+}.

Name: \qquad Student Number: \qquad
11. The following compounds are a few of the many toxins found in cigarette smoke.[7 marks]
(a) For each of the following compounds, you have been given a skeleton showing all atoms and their connectivity. Turn each skeleton into a valid Lewis diagram by adding the appropriate number of electrons.
[3 marks]
Include any non-zero formal charges on the appropriate atoms.
(i)
(ii)

(iii)

(b) For each of the following compounds, you have been given the molecular formula. Draw a valid Lewis diagram for each.
[2 marks]
Include any non-zero formal charges on the appropriate atoms.
(i) HCN
(ii) $\mathrm{H}_{2} \mathrm{~S}$
(c) Underneath each of your Lewis diagrams in part (b), identify the molecular geometry and give the corresponding bond angle.

Name: \qquad
\qquad
12. Ozone molecules in the upper atmosphere absorb radiation. If the radiation has a wavelength between 240 nm and 310 nm , the ozone molecules will decompose into oxygen molecules and oxygen atoms. The oxygen atoms then recombine with the oxygen molecules to make more ozone, releasing heat. This converts light energy into heat energy and insulates Earth.

$$
\begin{aligned}
\mathrm{O}_{3(\mathrm{~g})} & \rightarrow \mathrm{O}_{2(\mathrm{~g})}+\mathrm{O}_{(\mathrm{g})} & \text { light energy absorbed } \\
\mathrm{O}_{2(\mathrm{~g})}+\mathrm{O}_{(\mathrm{g})} & \rightarrow \mathrm{O}_{3(\mathrm{~g})} & \text { heat energy released }
\end{aligned}
$$

(a) What kind of electromagnetic radiation has a wavelength between 240 and 310 nm ?
[1 mark]
(b) Which wavelength represents the minimum amount of energy required for this reaction to proceed: 240 nm or 310 nm ?
[1 mark]
(c) Calculate the minimum amount of light energy that must be absorbed to convert 1 mole of ozone into oxygen molecules and atoms. Report your answer in kJ/mol.
(d) Draw all valid resonance structures for ozone.
\qquad
\qquad
13. The graph below shows the energy levels for three orbitals in a hydrogen atom.
$1 \mathrm{Ry}=\mathrm{R}_{\mathrm{H}}=2.179872 \times 10^{-18} \mathrm{~J}$
[8 marks]

(a) On the graph above, clearly show the ionization energy for a hydrogen atom. [1 mark] Leave the He^{+}and He columns clear. You will need them for parts (b) and (c).
(b) In the He^{+}column, draw and label lines showing the energies of the $n=1, n=2$ and $n=3$ orbitals in He^{+}.
[3 marks]
(c) It is not possible to calculate the exact energies of the orbitals in He without the help of a computer; however, they can be estimated. In the He column, draw and label a line showing the approximate energy of the $n=1$ orbital in He.
[2 marks]
(d) Why is it not possible to calculate the exact energies of the orbitals in He without the help of a computer?
[2 marks]

Name: \qquad Student Number: \qquad
14. For each of the molecules below, identify the dominant intermolecular force. [3 marks]
(a) NH_{3}
(b) CH_{4}
(c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
15.
(a) Under what conditions does a gas NOT behave ideally? Why?
(b) Most gases have lower pressures than expected under nonideal conditions. Only a few gases have higher pressures than expected under nonideal conditions. Based on what you know about nonideal gases, suggest one gas that you might expect to have a higher pressure than expected, and explain your choice.
[2 marks]

Name: \qquad Student Number: \qquad
16. Tritium $\left({ }^{3} \mathrm{H}\right)$ has a half-life of 4.50×10^{3} days. Its decays product is helium- $3\left({ }^{3} \mathrm{He}\right)$. [10 marks]
(a) Write a balanced equation for the decay of tritium to helium-3. [1 mark]
(b) What mass of tritium would remain in a 1.00 g sample after 1 year of decay? [3 marks]
(c) How much energy would be released by the decay described in part (b)?
\qquad
\qquad
17. Write a balanced chemical equation for the reaction of each of the following substances with water. Circle whether the resulting solution is acidic or basic.
Include states of matter for all products.
(a) $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ acid or base?
(b) $\quad \mathrm{Cs}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(c) $\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
18. As seen in class, Cs reacts much more violently with water than Na does. Use one of the three main periodic trends discussed in the 'periodic trends' section of the course to explain why this is the case.
19. What was the most useful and/or interesting thing you learned in CHEM 1000? [1 mark]

DATA SHEET

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	$1.660539 \times 10^{-27} \mathrm{~kg}$		Kelvin temperature scale	$0 \mathrm{~K}=-273.15{ }^{\circ} \mathrm{C}$
Avogadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)$	$6.022141 \times 10^{23} \mathrm{~mol}^{-1}$		Planck's constant	$6.626070 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~Hz}^{-1}$
Bohr radius $\left(\mathrm{a}_{0}\right)$	$5.291772 \times 10^{-11} \mathrm{~m}$		Proton mass	1.007277 u
Electron charge (e)	$1.602177 \times 10^{-19} \mathrm{C}$		Neutron mass	1.008665 u
Electron mass	$5.485799 \times 10^{-4} \mathrm{u}$		Rydberg Constant $\left(\mathrm{R}_{\mathrm{H}}\right)$	$2.179872 \mathrm{x} 10^{-18} \mathrm{~J}$
Ideal gas constant (R)	$8.314462 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$	Speed of light in vacuum	$2.997925 \mathrm{x} \mathrm{10} 0^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$	
	$8.314462 \mathrm{~m}^{3} \cdot{\mathrm{~Pa} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}}$	Standard atmospheric pressure	$1 \mathrm{bar}=100 \mathrm{kPa}$	
	Volume	$1000 \mathrm{~L}=1 \mathrm{~m}^{3}$		

Formulae

$c=\lambda v \quad E=h v \quad \quad=m v \quad \lambda=\frac{h}{p} \quad \Delta x \cdot \Delta p>\frac{h}{4 \pi} \quad r_{n}=a_{0} \frac{n^{2}}{Z} \quad E_{n}=-R_{H} \frac{Z^{2}}{n^{2}}$
$\overline{E_{k}}=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} \frac{R T}{N_{A}} \quad V_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 R T}{M}} \quad P V=n R T \quad\left(P+a \frac{n^{2}}{V^{2}}\right)(V-b n)=n R T$
$\Delta E=\Delta m c^{2}$
$A=-\frac{\Delta N}{\Delta t}$
$A=k N$
$\ln \left(\frac{N_{2}}{N_{1}}\right)=-k\left(t_{2}-t_{1}\right)$
$\ln (2)=k \cdot t_{1 / 2}$
$p K_{a} \approx 8-5 p$ for oxoacids $\mathrm{O}_{\mathrm{p}} \mathrm{E}(\mathrm{OH})_{\mathrm{q}}$

Spectrochemical Series

strong field

$$
\mathrm{CN}^{-}>\text {ethylenediamine }>\mathrm{NH}_{3}>\text { EDTA }^{4-}>\mathrm{H}_{2} \mathrm{O}>\text { oxalato }>\mathrm{OH}^{-}>\mathrm{F}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}
$$

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

Band of Stability Graph

DATA SHEET

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$	$\begin{gathered} 140.115 \\ { }_{58}^{140} \end{gathered}$	$\begin{gathered} 140.908 \\ { }_{59}^{140} \end{gathered}$	$\begin{gathered} 144.24 \\ \text { Nd } \end{gathered}$	$\begin{aligned} & \hline(145) \\ & \text { Pm } \end{aligned}$ 61	$\begin{gathered} 150.36 \\ \mathbf{S m} \\ 62 \end{gathered}$	$\begin{gathered} 151.965 \\ { }_{63}{ }^{\text {Eu }} \end{gathered}$	$\begin{gathered} 157.25 \\ \text { Gd } \end{gathered}$ 64	$\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$ 65	$\begin{gathered} 162.50 \\ \text { Dy } \end{gathered}$	$\begin{gathered} 164.930 \\ \mathbf{H o} \end{gathered}$ 67	$\begin{gathered} 167.26 \\ \mathbf{E r}^{\mathbf{1 6}} \end{gathered}$	$\begin{gathered} \hline 168.934 \\ \mathbf{T m} \end{gathered}$ 69	$\begin{gathered} \mathbf{c}_{70}^{173.04} \\ { }_{70} \mathbf{4 b} \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \end{gathered}$
$\frac{57}{227.0}$	58	59	63	237	${ }^{62}$	(243)	${ }^{64}$	${ }^{65}$	${ }^{66}$	(252)	${ }^{68}$	(25	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	02	03

Developed by Prof. R. T. Boeré

Isotope	Mass
${ }^{3} \mathrm{H}$	3.016049278 u
${ }^{3} \mathrm{He}$	3.016029319 u

