\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have six pages of questions and a formula/periodic table sheet.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
6) You may use a calculator.
7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Wednesday, February $13^{\text {th }}$, 2013. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 52$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 1000 (General Chemistry I)
Semester: Spring 2013
The University of Lethbridge

Spelling matters!	
Fluorine $=\mathrm{F}$	Fluorene $=\mathrm{C}_{13} \mathrm{H}_{10}$
Flourine $=$	

Date: \qquad

Question Breakdown

Q1	15
Q2	$/ 5$
Q3	$/ 5$
Q4	14
Q5	12
Q6	17
Q7	14
Q8	$/ 8$
Q9	15
Q10	13
Q11	14

Total / 52
\qquad
\qquad
1.
(a) Draw the orbital occupancy diagram (aka "orbital box diagram") for sulfur (S). Clearly label each subshell.
(b) Write the electron configuration for sulfur. Do not use the noble gas abbreviation.
(c) What is the charge of the most common ion of sulfur? Why?
2.
(a) Draw the valence orbital occupancy diagram (aka "orbital box diagram") for copper (Cu). Clearly label each subshell.
[2 marks]
(b) Write the electron configuration for copper. Use the noble gas abbreviation. [1 mark]
(c) Briefly explain what is unusual about the electron configuration of copper. [1 mark]
(d) Write the electron configuration for the Cu^{+}ion. Use the noble gas abbreviation.
\qquad
3. The emission spectrum for hydrogen atoms contains four wavelengths of visible light: $410 \mathrm{~nm}, 434 \mathrm{~nm}, 486 \mathrm{~nm}, 656 \mathrm{~nm}$

These lines are red, violet (purple), blue and cyan (blue-green).
(a) Match each colour to the appropriate wavelength:

$$
\text { red }=\ldots \text { violet }=\ldots n m
$$

(b) Why was it an important observation that hydrogen atoms can only emit a limited number of wavelengths of light? How did this observation change our understanding of the structure of the atom?
4. A laser delivers light with a wavelength of 4.8 nm , and each pulse delivers $6.42 \times 10^{-11} \mathrm{~J}$ of energy. If a single pulse from this laser is used to demonstrate the photoelectric effect, what is the maximum number of electrons that could be ejected from atoms in the metal?
[4 marks]
5. Use the equation $\Delta x \cdot \Delta p>\frac{h}{4 \pi}$ to demonstrate why Heisenberg's uncertainty principle has the greatest effect on particles with small masses.
\qquad
\qquad
6.
(a) How many different orbitals in a single atom can have $n=3$?
(b) How many different electrons in a single atom can have $n=3$?
(c) List all the orbitals in a single atom with $n=3$ and clearly indicate the value of l for each orbital. You do not need to draw pictures of the orbitals.
[5 marks]
7.
(a) Draw a $6 \mathrm{~d}_{\mathrm{xy}}$ orbital. Include labeled axes and clearly show the phases. Do NOT draw the radial nodes.
(b) Give one set of quantum numbers that could correspond to an electron in a $6 \mathrm{~d}_{\mathrm{xy}}$ orbital.
(c) How many radial nodes are there in a $6 \mathrm{~d}_{\mathrm{xy}}$ orbital?
\qquad
8. Complete the table below. Only complete the last column for isotopes which you have identified as radioactive.
[8 marks]

Isotope	\mathbf{N}	\mathbf{Z}	Radioactive? (circle yes or no)	Predict mode(s) of decay: name the type of decay and write a balanced chemical equation (for radioactive isotopes only)
${ }^{23} \mathrm{Na}$			yes / no	
${ }^{30} \mathrm{Na}$		yes / no		
			yes / no	

9.

[5 marks]
(a) Explain why half-life is an important consideration when choosing an isotope for radioactive dating of a sample. Your answer should clearly address the consequences of choosing an isotope with an inappropriate half-life.
[4 marks]
(b) Suggest a range of reasonable half-lives for isotopes that would be useful in radioactive dating of a sample suspected to be 25,000 years old.
[1 mark]
10. If a sample of radioactive material has a half-life of 16 hours, how long will it take for $80 . \%$ of the sample to decay?
11. The first step in the actinium decay chain is the decay of ${ }^{239} \mathrm{Pu}$ to ${ }^{235} \mathrm{U}$. Calculate the energy change for this reaction. Report your answer in J/mol.
\qquad

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)
Avogadro's number
Bohr radius (a_{0})
Electron charge (e)
Electron mass
$1.660539 \times 10^{-27} \mathrm{~kg}$
$6.022141 \times 10^{23} \mathrm{~mol}^{-1}$
$5.291772 \times 10^{-11} \mathrm{~m}$
$1.602177 \times 10^{-19} \mathrm{C}$
$5.485799 \times 10^{-4} \mathrm{u}$

Planck's constant
Proton mass
Neutron mass
Rydberg Constant (R_{H})
Speed of light in vacuum
$6.626070 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~Hz}^{-1}$
1.007277 u
1.008665 u
$2.179872 \times 10^{-18} \mathrm{~J}$
$2.997925 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Formulae

$c=\nu \lambda$
$p=m v$
$\lambda=\frac{h}{p}$

$$
\Delta x \cdot \Delta p>\frac{h}{4 \pi}
$$

$r_{n}=a_{0} \frac{n^{2}}{Z} \quad E_{n}=-R_{H} \frac{Z^{2}}{n^{2}} \quad E_{k}=\frac{1}{2} m v^{2}$
$\Delta E=\Delta m c^{2} \quad A=-\frac{\Delta N}{\Delta t} \quad \ln \left(\frac{N_{2}}{N_{1}}\right)=-k\left(t_{2}-t_{1}\right) \quad \ln (2)=k \cdot t_{1 / 2}$

Some Useful Masses

${ }_{94}^{239} \mathrm{Pu}$	239.052163 u
${ }_{92}^{235} \mathrm{U}$	235.043930 u
${ }_{2}^{2} \alpha$	4.001506179 u
${ }_{1}^{1} p$	1.007276467 u
${ }_{0}^{1} n$	1.008664916 u

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

Band of Stability Graph

The original version of the graph used a rainbow colour scale.
http://commons.wikimedia.org/wiki/File:Isotopes_and_half-life_eo.svg
\qquad

1	CHEM 1000 Periodic Table																18
$\begin{aligned} & { }_{1}^{1.0079} \\ & { }_{1} \end{aligned}$	2											13	14	15	16	17	${ }_{2}^{4.0026}{ }^{4}$
6.941 $\mathbf{~ L i}$	${ }_{4}^{9.0122}{ }^{\text {Be }}$											${ }_{5}^{10.811}$	${ }_{6}^{12.011}$	${ }_{7}^{14.0067}$	${ }_{8}^{15.9994}$	${ }_{9}^{18.9984}$	${ }_{\substack{\text { chen } \\ 10 \\ 10}}^{\text {Ne }}$
22.9898 ${ }_{11}$	$\begin{aligned} & \hline 24.3050 \\ & \mathbf{M g} \\ & 12 \end{aligned}$	3	4	5	6	7	8	9	10	11	12	$\begin{array}{\|c\|c\|} \hline 26.9815 \\ \hline \mathbf{A l} \end{array}$ 13	$\begin{aligned} & 28.0855 \\ & { }_{14}^{28} \end{aligned}$	$\begin{aligned} & \mathbf{x}^{30.9738} \\ & \mathbf{P}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 32.066 \\ \text { S } \end{array}$	${\underset{17}{35.4527}}_{\substack{35}}$	$\begin{gathered} 39.948 \\ \mathbf{A r} \end{gathered}$ 18
39.0983 \mathbf{K}^{39}	$\begin{array}{\|c} \hline 40.078 \\ \mathbf{C a} \end{array}$ 20	$\begin{gathered} 44.9559 \\ \mathbf{S c} \end{gathered}$ 21	$\begin{gathered} { }_{22}^{47.88} \mathbf{T i} \\ 22 \end{gathered}$	$\stackrel{\mid c}{50.9415}_{\mathbf{v}^{53}}$	51.9961 $\mathbf{C r}$ 24	$\begin{gathered} 54.9380 \\ \mathbf{M n} \end{gathered}$ 25	${ }_{26}^{55.847}{ }_{26}$	$\begin{array}{\|c} 58.9332 \\ \mathbf{C o} \end{array}$	$\begin{gathered} 58.693 \\ \mathbf{N i} \end{gathered}$ 28	$\begin{array}{\|l\|} \hline 63.546 \\ \mathbf{C u} \\ 29 \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 65.39 \\ \mathbf{Z n} \\ 30 \end{array} \end{gathered}$	$\begin{gathered} 69.723 \\ \mathbf{G a} \end{gathered}$ 31	$\begin{array}{\|c} \hline 72.61 \\ \mathbf{G e} \end{array}$	$\begin{gathered} 74.9216 \\ \text { As } \end{gathered}$ 33	$\begin{array}{\|c} \hline 78.96 \\ \mathrm{Se} \end{array}$	$\begin{array}{\|c\|} \hline 79.904 \\ \mathbf{B r} \\ 35 \end{array}$	$\begin{gathered} 83.80 \\ \mathbf{K r} \end{gathered}$
85.4678 $\mathbf{R b}$ 37	$\begin{array}{\|c} \substack{87.62 \\ \mathbf{S r} \\ 38 \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & \frac{21}{88.9059} \\ & { }_{39} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 91.224 \\ \mathbf{Z n r} \\ 40 \end{array}$	92.9064 Nb 41	$\begin{array}{\|l\|} \hline 24 \\ \hline 9.94 \\ \text { Mo } \\ 42 \\ \hline \end{array}$		101.07 $\mathbf{R u}$ 44	102.906 $\mathbf{R h}$ 45	106.42 Pd 46	$\begin{gathered} 107.868 \\ \text { Ag } \\ 47 \end{gathered}$	112.411 Cd 48	$\begin{array}{\|c} \hline 114.82 \\ \text { In } \\ 49 \end{array}$	$\begin{array}{\|l\|} \hline 118.710 \\ \text { Sn } \end{array}$ 50	$\begin{gathered} \frac{125}{121.757} \\ \mathbf{S b} \end{gathered}$ 51		$\begin{gathered} 126.905 \\ \mathbf{I} \\ 53 \\ \hline \end{gathered}$	${ }_{\text {c }}^{\substack{131.29 \\ \text { Xe }}}$
	$\begin{array}{\|c\|c\|} \hline 137.327 \\ \mathbf{B a} \end{array}$	La-Lu	$\begin{gathered} 178.49 \\ \mathbf{H f} \end{gathered}$	$\begin{array}{\|c} \hline 180.948 \\ \mathbf{T a} \end{array}$	$\begin{gathered} 183.85 \\ \mathbf{W} \end{gathered}$	$\begin{gathered} 186.207 \\ \operatorname{Re} \end{gathered}$	$\begin{gathered} 190.2 \\ \mathbf{o s} \end{gathered}$	$\begin{aligned} & \left.\begin{array}{c} 192.22 \\ \text { Ir } \\ 77 \end{array} \right\rvert\, \end{aligned}$	$\begin{gathered} 195.08 \\ \mathbf{P t} \end{gathered}$	$\begin{gathered} 196.967 \\ \mathbf{A u} \end{gathered}$	$\begin{gathered} 200.59 \\ \mathbf{H g} \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 204.383 \\ \mathbf{T l} \end{array}$	$\begin{array}{\|c\|} \hline 207.19 \\ \mathbf{P b} \end{array}$	${ }_{83}^{208.980}$	$\begin{array}{\|c} \hline(210) \\ \hline \mathbf{P o} \end{array}$	${ }_{85}^{\text {At }}$	${ }_{\text {che }}^{\text {(222) }}$
${ }_{87}{ }^{(223)}$	$\begin{aligned} & \hline 226.025 \\ & \text { Ra } \\ & \hline 88 \\ & \hline \end{aligned}$	Ac-Lr	$\begin{array}{\|c} \hline \text { (261) } \\ \text { Rf } \\ 104 \end{array}$	$\begin{array}{\|c\|} \hline(262) \\ \text { Db } \\ \hline 105 \\ \hline \end{array}$	$\begin{gathered} \hline(263) \\ \hline \text { Sg } \\ 106 \end{gathered}$	$\begin{array}{\|c\|} \hline(262) \\ \text { Bh } \\ 107 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline(265) \\ \hline \mathbf{H s} \\ \hline 108 \end{array}$	$\begin{gathered} \mid(266) \\ \mathbf{M t} \\ 109 \end{gathered}$	$\begin{array}{\|c} \hline(281) \\ \text { Dt } \\ 110 \end{array}$	$\begin{array}{\|c\|} \hline(283) \\ \text { Rg } \\ \hline 111 \\ \hline \end{array}$							

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$	$\begin{gathered} 140.115 \\ \text { Ce } \end{gathered}$	$\begin{gathered} 140.908 \\ \text { Pr } \end{gathered}$	$\begin{gathered} 144.24 \\ \text { Nd } \end{gathered}$	$\begin{aligned} & \hline(145) \\ & \mathbf{P m} \end{aligned}$	$\begin{gathered} 150.36 \\ \text { Sm } \end{gathered}$	$\begin{gathered} 151.965 \\ \text { Eu } \end{gathered}$	$\begin{gathered} 157.25 \\ \text { Gd } \end{gathered}$	$\begin{gathered} \hline 158.925 \\ \mathbf{T b} \end{gathered}$	$\begin{gathered} 162.50 \\ \text { Dy } \end{gathered}$	$\begin{gathered} 164.930 \\ \mathbf{H o} \end{gathered}$	$\begin{gathered} 167.26 \\ \text { Er } \end{gathered}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \end{gathered}$	$\begin{gathered} 173.04 \\ \mathbf{Y b} \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \end{gathered}$
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré

