NAME:	Section: Student Number:
Fall 2012	Chemistry 1000 Practice Midterm #2A/ 60 marks
INSTRUCTIONS: 1)	Please read over the test carefully before beginning. You should have 6 pages of questions and a double-sided formula/periodic table sheet.
2)	If your work is not legible, it will be given a mark of zero.
	Marks will be deducted for incorrect information added to an otherwise correct answer.
4)	Marks will be deducted for improper use of significant figures and for
,	missing or incorrect units.
5)	Show your work for all calculations. Answers without supporting calculations will not be given full credit.
6)	You may use a calculator.
7)	You have 90 minutes to complete this test.
Mountain Time on Mono constitute academic mis punishment would be a	or in any other way divulge) the contents of this exam until after 8pm lay, November 19 th , 2012. I understand that breaking this agreement would sconduct, a serious offense with serious consequences. The minimum mark of 0/60 on this exam and removal of the "overwrite midterm mark ption for my grade in this course; the maximum punishment would include
Signature: Course: CHEM 1000 (Go Semester: Fall 2012 The University of Lethbr	eneral Chemistry I)

Question Breakdown

Q1	/ 15
Q2	/ 3
Q3	/ 3
Q4	/ 6
Q5	/ 3
Q6	/ 5
Q7	/ 5
Q8	/ 6
Q9	/ 4
Q10	/ 5
Q11	/ 5

Total	/ 60

NAM	ſE:	Section:	Student Number:	
1.				[15 marks]
(a)	All ionization energies have a		sign.	
(b)	A carbon atom is	in size th	nan an oxygen atom.	
(c)	Germanium is electr	onegative than se	elenium.	
(d)	Sodium metal is produced by electronic	rolysis of	in the	state.
(e)	Aluminium metal is produced by e	lectrolysis of	in the	state.
(f)	Sodium hydroxide is produced by	electrolysis of	in the	state.
(g)	The gas produced when barium car	bonate is added	to acid is	
(h)	Lithium and magnesium have simi	lar chemical pro	perties because of	
			·	
(i)	Aluminium is less reactive than one	0 1		
(j)	Two amphoteric oxides are			·
(k)	One ion that can make water "hard	" is		
2.	Briefly explain why Cu ²⁺ has a sma	aller atomic radiu	ıs than Cu ⁺ .	[3 marks]
3.	Which element has a larger electron Briefly explain your answer.	n affinity, Ne or	F?	[3 marks]
	Briefly explain your answer.			[3 r

NAME:	Section:	Student Number:
111111111	~ · · · · · · · · · · · · · · · · · · ·	2 10 0 11 1 1 10 11 10 11 1

- 4. Draw one valid Lewis diagram for each of the molecules/ions listed below. **[6 marks]** *Include any non-zero formal charges on the appropriate atoms.*
- $(a) N_2H_4 (b) SF_4$

(c) AsO_4^{3-}

5. Is SF₄ a polar or nonpolar molecule? Why? [4 marks]

6. There are two valid resonance structures for an anion with the chemical formula $C_2H_3O^-$. The connectivity for this anion is shown below. [5 marks]

- (a) On the two skeletons above, draw each of the two valid resonance structures. [4 marks] Include any non-zero formal charges on the appropriate atoms.
- (b) Circle the better resonance structure (the resonance structure which more closely resembles the true/averaged structure of this anion). [1 mark] You will only obtain credit for part (b) if your answers to part (a) are correct.

NAMI	AME: Section: Student Number	r:
7.	Lithium carbonate (Li ₂ CO ₃ , 25.33 g) is heated to 1400 °C and releases	carbon dioxide. [5 marks]
(a)	Write a balanced chemical equation describing this reaction. Include st	tates of matter. [1 mark]
(b)	The carbon dioxide is collected in a container at 23.7 °C and 0.956 Under these conditions, what volume of carbon dioxide is formed?	bar ambient pressure. [4 marks]

NAM	E:	_ Section:	Student Number:	
8.	Write a balanced chemical equipment and in the second chemical equipment. If no reaction occurs, we have a second chemical equipment.			Include states of [6 marks]
(a)	Barium (Ba) is added to liquid	bromine.		[1 mark]
(b)	Lithium is added to aqueous Ho	Cl.		[1 mark]
(c)	Beryllium is added to water.			[1 mark]
(d)	Magnesium is reacted with oxy	[1 mark]		
(e)	Aluminium is added to concent	trated aqueous NaOH.		[2 marks]
0	Complete the following table			[A wowled]
9.	Complete the following table. Chemical Formula		Name	[4 marks]
	MnO ₂		A TODARIO	
	CaF ₂			
			sodium sulfide	
			magnesium nitride	

NAME:	Section:	Student Number:	

10. Give the <u>name</u> and <u>symbol</u> for each of the elements below:

[5 marks]

name

symbol

i.
$$Z=4$$

ii.
$$Z = 14$$

iii.
$$Z = 17$$

iv.
$$Z = 27$$

v.
$$Z = 31$$

1			Parti	al Perio	odic Tal	ble (cop	ied fro	m data	sheet)								18
1.0079																	4.0026
H																	He
1	2											13	14	15	16	17	2
6.941													12.011	14.0067	15.9994	18.9984	20.1797
Li													C	N	O	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050																39.948
Na	Mg	•		_		_	•	^	4.0	4.4	10						Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983		44.9559		50.9415	51.9961	54.9380	55.847		58.693	63.546			72.61	74.9216	78.96	79.904	83.80
K		Sc		\mathbf{V}	Cr	Mn	Fe		Ni	Cu			Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							

NAME	ME: Section:	Student Number:
11. (a)	The ions Br ⁻ , Rb ⁺ , Se ²⁻ and Sr ²⁺ all have the same electronic radii are 132, 166, 182 and 184 pm (not not give the electron configuration for these ions. Do not	ecessarily in that order). [5 marks]
(b)	Give the electron configuration for these ions using the	ne noble gas abbreviation. [1 mark]
(c)	Assign which ion has which radius. $Br^-____pm \qquad Rb^+____pm \qquad Se^{2-}__$	[1 mark]
(d)	Briefly explain why you assigned each radius in part	(c). [2 marks]

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	$1.660\ 539 \times 10^{-27}\ \text{kg}$	Planck's constant	$6.626\ 070 \times 10^{-34}\ \text{J}\cdot\text{Hz}^{-1}$
Avogadro's number	$6.022\ 141 \times 10^{23}\ \text{mol}^{-1}$	Proton mass	1.007 277 u
Bohr radius (a ₀)	$5.291\ 772 \times 10^{-11}\ \mathrm{m}$	Neutron mass	1.008 665 u
Electron charge (e)	$1.602\ 177 \times 10^{-19}\ \mathrm{C}$	Rydberg Constant (R _H)	2.179 872 x 10 ⁻¹⁸ J
Electron mass	$5.485799 \times 10^{-4} \mathrm{u}$	Speed of light in vacuum	2.997 925 x 10 ⁸ m·s ⁻¹
Ideal gas constant (R)	8.314 462 J·mol ⁻¹ ·K ⁻¹	Standard atmospheric pressure	1 bar = 100 kPa
	8.314 462 m ³ ·Pa·mol ⁻¹ ·K ⁻¹		

Formulae

$$c = v\lambda$$

$$E = h \nu$$

$$p = mv$$

$$\lambda = \frac{h}{p}$$

$$\Delta x \cdot \Delta p > \frac{h}{4\pi}$$

$$r_n = a_0 \frac{n^2}{Z}$$

$$r_n = a_0 \frac{n^2}{Z}$$
 $E_n = -R_H \frac{Z^2}{n^2}$ $E_k = \frac{1}{2} m v^2$ $PV = nRT$

$$E_k = \frac{1}{2}mv^2$$

$$PV = nRT$$

$$\Delta E = \Delta mc^2$$

$$A = -\frac{\Delta N}{\Delta t}$$

$$A = kN$$

$$\Delta E = \Delta mc^{2} \qquad A = -\frac{\Delta N}{\Delta t} \qquad A = kN \qquad \ln\left(\frac{N_{2}}{N_{1}}\right) = -k(t_{2} - t_{1}) \qquad \ln(2) = k \cdot t_{1/2}$$

$$\ln(2) = k \cdot t_{1/2}$$

Band of Stability Graph

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

The original version of the graph used a rainbow colour scale. http://commons.wikimedia.org/wiki/File:Isotopes_and_half-life_eo.svg

NAME:	Section:	Student Number:
-------	----------	-----------------

1			Cl	HEM 1	1000 P	artial	Period	lic Tal	ble								18
1.0079																	4.0026
H	_																He
1	2											13	14	15	16	17	2
6.941													12.011	14.0067	15.9994	18.9984	20.1797
Li													C	N	O	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050																39.948
Na	Mg	2	1	5	4	7	8	9	10	11	12						Ar
11	12	3	4		6			9	10	11	12	13	14	15	16	17	18
39.0983		44.9559		50.9415	51.9961	54.9380	55.847		58.693	63.546			72.61	74.9216	78.96	79.904	83.80
K		Sc		V	Cr	Mn	Fe		Ni	Cu			Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							

138.9	906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	a	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
57		58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.0	028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	c	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89		90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré