\qquad
\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 6 pages of questions and a formula/periodic table sheet.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
6) You may use a calculator.
7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:30pm Mountain Time on Monday, November 19 ${ }^{\text {th }}$, 2012. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 60$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 1000 (General Chemistry I)
Semester: Fall 2012
The University of Lethbridge

| Spelling matters! |
| :--- | :--- |
| Fluorine $=\mathrm{F} \quad$ Fluorene $=\mathrm{C}_{13} \mathrm{H}_{10}$ |
| Flourine $=$ |

Date: \qquad

Question Breakdown

	$/ 8$
Q1	18
Q2	13
Q3	12
Q4	14
Q5	14
Q6	14
Q7	16
Q8	16
Q9	15
Q10	
Q11	

Total
/ 60
\qquad
\qquad

1. Complete the following table, giving the name and symbol for an element meeting each description.
[8 marks]

Description	Symbol	Name
The alkali metal in the $4^{\text {th }}$ period		
The noble gas in the $2^{\text {nd }}$ period		
An element in Group 17 that is a gas under standard laboratory conditions		
The only element in Group 13 which is not a metal		
The element in the $4^{\text {th }}$ common ion is a dianion (-2 charge)		
A transition metal that, when neutral, has six valence electrons		
The element in the $1^{\text {st }}$ larger atomic radius		
The element in Group 2 with the atomic radius		

2. Write balanced chemical equations for each of the following reactions. Include states of matter.
(a) Magnesium metal reacts with liquid bromine.
(b) Potassium metal reacts with water.
(c) Lithium metal reacts with nitrogen.
(d) Aluminium oxide reacts with aqueous acid.
\qquad
3.

(a) What is a diagonal relationship?
(b) Give an example of a reaction that can be rationalized by a diagonal relationship and explain briefly.
4.
(a) What is passivation?
(b) Give an example of a passivated metal.
5. In the first step of the industrial process for refining aluminium, the ore is treated with base. Explain what this step accomplishes and give a balanced chemical equation for the reaction.
\qquad
\qquad
6. Consider the following set of elements:

Which of these elements has the highest second ionization energy? Why? Your explanation must include the definition of a second ionization energy.
7. The general trend for electron affinity is for the values to increase as you go from left to right across a period.
(a) Draw a valence orbital occupancy diagram (aka "orbital box diagram") for phosphorus.
(b) Draw a valence orbital occupancy diagram (aka "orbital box diagram") for silicon.
(c) Explain why the electron affinity for phosphorus is smaller than that for silicon.[2 marks]
\qquad
8. It is possible to make octet-rule-obeying species with the general formula $A F_{4}^{z}$ where z is the charge (possibly zero) and $\mathrm{A}=$ boron, carbon or nitrogen.
For each species:

- draw a Lewis diagram (including any non-zero formal charges), and
- clearly indicate what the overall charge must be
(a) $B F_{4}^{Z}$
(b) $\quad C F_{4}^{z}$
(c) $\quad N F_{4}^{Z}$

9.

(a) Draw all formal-charge-minimized resonance structures for the sulfite ion $\left(\mathrm{SO}_{3}{ }^{2-}\right)$. Include non-zero formal charges on the appropriate atoms.
(b) What is the average S-O bond order for the sulfite ion?
[1 mark]
(c) Draw a valid Lewis diagram for sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$.
[1 mark]
\qquad
10. Experimental evidence shows that $\mathrm{PF}_{3} \mathrm{Cl}_{2}$ has a dipole moment whereas $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ does not. Answer the following questions regarding these two molecules and this experimental observation.
[10 marks]
(a) Draw a Lewis diagram for each of these compounds.
(b) Draw each of these two compounds showing the correct VSEPR geometry, and give the name for the molecular geometry of each compound.
[4 marks]
(c) Explain why the F and Cl atoms occupy the positions shown in your VSEPR structures.
[2 marks]
(d) Explain why $\mathrm{PF}_{3} \mathrm{Cl}_{2}$ has a dipole moment whereas $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ does not.
\qquad
11.
(a) Write a balanced chemical equation for the electrolysis of molten sodium chloride. Include states of matter.
[1 mark]
(b) If we want to make 0.600 kg of sodium metal, what mass of sodium chloride must be electrolyzed? Report your answer in kg.
[4 marks]
\qquad

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u) $\quad 1.660539 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $\quad 6.022141 \times 10^{23} \mathrm{~mol}^{-1}$
Bohr radius (a_{0})
Electron charge (e)
Electron mass
Ideal gas constant (R)
$5.291772 \times 10^{-11} \mathrm{~m}$
$1.602177 \times 10^{-19} \mathrm{C}$
$5.485799 \times 10^{-4} \mathrm{u}$
$8.314462 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$8.314462 \mathrm{~m}^{3} \cdot \mathrm{~Pa} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$

Planck's constant
Proton mass
Neutron mass
Rydberg Constant (R_{H})
Speed of light in vacuum
Standard atmospheric pressure

Formulae

$c=\nu \lambda$
$E=h v$
$p=m v$
$\lambda=\frac{h}{p}$
$\Delta x \cdot \Delta p>\frac{h}{4 \pi}$
$r_{n}=a_{0} \frac{n^{2}}{Z}$
$E_{n}=-R_{H} \frac{Z^{2}}{n^{2}}$
$E_{k}=\frac{1}{2} m v^{2}$
$P V=n R T$
$\Delta E=\Delta m c^{2} \quad A=-\frac{\Delta N}{\Delta t} \quad \ln \left(\frac{N_{2}}{N_{1}}\right)=-k\left(t_{2}-t_{1}\right) \quad \ln (2)=k \cdot t_{1 / 2}$

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

The original version of the graph used a rainbow colour scale. http://commons.wikimedia.org/wiki/File:Isotopes_and_half-life_eo.svg
\qquad

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$	$\begin{gathered} 140.115 \\ \mathbf{C e} \\ 58 \end{gathered}$	$\begin{gathered} 140.908 \\ \text { Pr } \\ 59 \end{gathered}$	$\begin{gathered} 144.24 \\ \text { Nd } \end{gathered}$		$\begin{gathered} 150.36 \\ \text { Sm } \end{gathered}$ 62	$\begin{gathered} 151.965 \\ \text { Eu } \end{gathered}$	$\begin{gathered} 157.25 \\ \text { Gd } \end{gathered}$ 64	$\begin{aligned} & 158.925 \\ & \mathbf{T b} \\ & 65 \end{aligned}$	$\begin{gathered} 162.50 \\ \text { Dy } \\ 66 \end{gathered}$	$\begin{gathered} 164.930 \\ \text { Ho } \end{gathered}$ 67	$\begin{aligned} & 167.26 \\ & \mathbf{E r} \\ & 68 \end{aligned}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \\ 71 \end{gathered}$
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré

