NAME:	Student Number:	tudent Number:		
Fall 2012	Chemistry 1000 Practice Midterm #2B	/ 60 marks		
DIGEDII GELONG	4) 71	** 1 111		

INSTRUCTIONS:

- 1) Please read over the test carefully before beginning. You should have 6 pages of questions and a formula/periodic table sheet.
- 2) If your work is not legible, it will be given a mark of zero.
- 3) Marks will be deducted for incorrect information added to an otherwise correct answer.
- 4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
- 5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
- 6) You may use a calculator.
- 7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:30pm Mountain Time on Monday, November 19th, 2012. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/60 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature:	Date:	
Course: CHEM 1000 (General Chemistry I)		

Semester: Fall 2012

The University of Lethbridge

Spelling matter	rs!
Fluorine = F	Fluorene = $C_{13}H_{10}$
Flourine =	SELF-RISIAG ON RICHED PLEACHED

Question Breakdown

Q1	/ 8
Q2	/ 8
Q3	/ 3
Q4	/ 2
Q5	/ 4
Q6	/ 4
Q7	/ 4
Q8	/ 6
Q9	/ 6
Q10	/ 10
Q11	/ 5

Total	/ 60

Description	Symbol	Name
The alkali metal in the 4 th period		
The noble gas in the 2 nd period		
An element in Group 17 that is a gas under standard laboratory conditions		
The only element in Group 13 which is not a metal		
The element in the 4 th period whose most common ion is a dianion (-2 charge)		
A transition metal that, when neutral, has six valence electrons		
The element in the 1 st period with the larger atomic radius		
The element in Group 2 with the smallest atomic radius		
Write balanced chemical equations for each of the latter of the latter.	of the followin	g reactions. [8 n

Lithium metal reacts with nitrogen.

Aluminium oxide reacts with aqueous acid.

(c)

(d)

NAMI	E: Student Number:
3. (a)	[3 marks] What is a diagonal relationship?
(b)	Give an example of a reaction that can be rationalized by a diagonal relationship and explain briefly.
4. (a)	[2 marks] What is passivation?
(b)	Give an example of a passivated metal.
5.	In the first step of the industrial process for refining aluminium, the ore is treated with base. Explain what this step accomplishes and give a balanced chemical equation for the reaction. [4 marks]

NAM	ME: Studen	t Number:
6.	Consider the following set of elements:	[4 marks]
	Na, Mg, Al, and F	
	Which of these elements has the highest second ionic Your explanation must include the definition of a second ionic transfer in the second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic transfer is a second ionic transfer in the second ionic t	•
7.	The general trend for electron affinity is for the val right across a period.	ues to increase as you go from left to [4 marks]
(a)	Draw a valence orbital occupancy diagram (aka "orl	bital box diagram") for phosphorus. [1 mark]
(b)	Draw a valence orbital occupancy diagram (aka "or	bital box diagram") for silicon. [1 mark]
(c)	Explain why the electron affinity for phosphorus is	smaller than that for silicon.[2 marks]

NAM	E:	Student I	Number:	
8.	It is possible to make octet-rule-obeying species with the general formula AF_4^z where z is the charge (possibly zero) and A = boron, carbon or nitrogen. [6 marks] For each species:			
	 draw a Lewis diagram 	(including any non-zero	o formal charg	es), and
	 clearly indicate what th 	e overall charge must b	oe -	
(a)	BF_4^z (b)	CF_4^z (6	NF_4^z	
9.				[6 marks]
(a)	Draw all formal-charge-mini Include non-zero formal charg			
(b)	What is the average S-O bond	order for the sulfite ion	?	[1 mark]
(c)	Draw a valid Lewis diagram fo	or sulfurous acid (H2SC) ₃).	[1 mark]

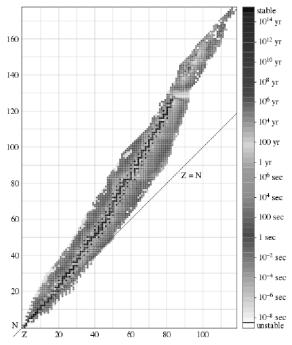
NAME:		Student Number:		
10.	Experimental evidence shows that PF ₃ Cl ₂ has not. Answer the following questions regardle experimental observation.	arding these two molecule		
(a)	Draw a Lewis diagram for each of these compo	unds.	[2 marks]	
(b)	Draw each of these two compounds showing the name for the molecular geometry of each compounds		and give the [4 marks]	
(c)	Explain why the F and Cl atoms occupy the positio	ns shown in your VSEPR struct	tures. [2 marks]	
(d) marks	Explain why PF_3Cl_2 has a dipole moment wher J	eas PCl ₃ F ₂ does not.	[2	

NAM	E: Student Number:
11.	[5 marks
(a)	Write a balanced chemical equation for the electrolysis of molten sodium chloride Include states of matter. [1 mark]
(b)	If we want to make 0.600 kg of sodium metal, what mass of sodium chloride must b
	electrolyzed? Report your answer in kg. [4 marks

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	$1.660539 \times 10^{-27}\mathrm{kg}$	Planck's constant	$6.626\ 070 \times 10^{-34}\ \text{J}\cdot\text{Hz}^{-1}$
Avogadro's number	$6.022\ 141 \times 10^{23}\ mol^{-1}$	Proton mass	1.007 277 u
Bohr radius (a ₀)	$5.291\ 772 \times 10^{-11}\ \text{m}$	Neutron mass	1.008 665 u
Electron charge (e)	$1.602\ 177 \times 10^{-19}\ C$	Rydberg Constant (R _H)	2.179 872 x 10 ⁻¹⁸ J
Electron mass	$5.485799 \times 10^{-4} \mathrm{u}$	Speed of light in vacuum	$2.997 925 \times 10^8 \mathrm{m}\cdot\mathrm{s}^{-1}$
Ideal gas constant (R)	8.314 462 J·mol ⁻¹ ·K ⁻¹	Standard atmospheric pressure	1 bar = 100 kPa
	$8.314\ 462\ {\rm m}^3\cdot{\rm Pa\cdot mol}^{-1}\cdot{\rm K}^{-1}$		


Formulae

$$c = v\lambda$$
 $E = hv$ $p = mv$ $\lambda = \frac{h}{p}$ $\Delta x \cdot \Delta p > \frac{h}{4\pi}$

$$r_n = a_0 \frac{n^2}{Z} \qquad E_n = -R_H \frac{Z^2}{n^2} \qquad E_k = \frac{1}{2} m v^2 \qquad PV = nRT$$

$$\Delta E = \Delta mc^{2} \qquad A = -\frac{\Delta N}{\Delta t} \qquad A = kN \qquad \ln\left(\frac{N_{2}}{N_{1}}\right) = -k(t_{2} - t_{1}) \qquad \ln(2) = k \cdot t_{1/2}$$

Band of Stability Graph

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

The original version of the graph used a rainbow colour scale. http://commons.wikimedia.org/wiki/File:Isotopes_and_half-life_eo.svg

1				CHE	M 100	00 Per	iodic T	Γable									18
1	2											13	14	15	16	17	2
6.941												10.811	12.011	14.0067	15.9994	18.9984	
Li	4											В	C	N	О	F	10
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	18
11	12				U		0					13	14	15	16	17	_
		44.9559	47.88					58.9332	58.693 Ni	63.546	65.39	69.723	72.61			79.904	83.80
19	20	Sc 21	Ti 22	23	24	25	26	Co 27	28	Cu 29	Zn 30	Ga	Ge 32	33	34	Br 35	K r 36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							

138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré