NAME:	Student Number:
Spring 2013	Chemistry 1000 Practice Midterm #2C/ 50 marks
INSTRUCTIONS:	 Please read over the test carefully before beginning. You should have 6 pages of questions and a formula/periodic table sheet. If your work is not legible, it will be given a mark of zero. Marks will be deducted for incorrect information added to an otherwise correct answer. Marks will be deducted for improper use of significant figures and for missing or incorrect units. Show your work for all calculations. Answers without supporting calculations will not be given full credit. You may use a calculator. You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8pm Mountain Time on Wednesday, March 20th, 2013. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/50 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: _____ Course: CHEM 1000 (General Chemistry I) Semester: Spring 2013 The University of Lethbridge Date: _____

Question Breakdown

Q1	/ 10
Q2	/ 5
Q3	/ 4
Q4	/ 3
Q5	/ 3
Q6	/ 5
Q7	/ 9
Q8	/ 5
Q9	/ 5
Q10	/ 1

Student Number:

- For each of the following statements, circle whether they are true <u>or</u> false. If true, briefly explain why. If false, give an example that proves the statement false. [10 marks] *Note: All marks on this question are for the explanations and/or examples. No credit will*
- (a) The ionization energy for every element is larger than for the element below it (assuming that there is an element below it). **TRUE / FALSE**

be given for a 'true' or 'false' without appropriate support.

(b) The electron affinity for every element is larger than for the element to its left (assuming that there is an element to its left). **TRUE / FALSE**

(c) Elements in Group 2 form +2 cations but not ions with any other charges. TRUE / FALSE

(d) The radius of a neutral atom of alkali metal is always larger than the radius of a neutral atom of the alkaline earth metal in the same period as it. **TRUE / FALSE**

(e) An atom bonded to three other atoms is always trigonal planar. **TRUE / FALSE**

2. If 5.0 g lithium metal reacts fully with nitrogen, what mass of lithium nitride is produced? *As part of your answer, you must include a balanced chemical equation.* [5 marks]

3. Air contains a number of different gases. Sometimes, a scientist needs to create an environment in which some of those gases have been removed from the air. The two gases which are most commonly removed are carbon dioxide and water vapour.

One way to remove carbon dioxide from air is to pass the air through a tube containing magnesium oxide. [4 marks]

- (a) Write a balanced chemical equation for the reaction that occurs between the carbon dioxide and the magnesium oxide. *Include states of matter*. [2 marks]
- (b) How could the magnesium oxide be regenerated so that it could be used to 'clean' more air? [1 mark]
- (c) Write a balanced chemical equation to show what happens in your answer to part (b). *Include states of matter.* [1 mark]

5.

Student Number:_____

4. The current procedure used for the industrial production of aluminium was developed in the late 1800s. Before then, aluminium was considered a precious metal. Why was aluminium once so difficult to make, and how was this difficulty overcome? [3 marks]

[3 marks] Why is it essential that the chlorine gas and sodium hydroxide produced when aqueous (a)

[2 marks]

sodium chloride is electrolyzed are kept separate? Be specific.

(b) What is the third product in the electrolysis of aqueous sodium chloride? [1 mark]

NAME:	

6.	Give	the <u>name</u> and <u>symbol</u> for each of the elements below:		[5 marks]
		name	symbol	
	i.	Z = 22		
		7 05		
	ii.	Z = 25		
	iii.	Z = 28		
	iv.	Z = 31		
	v.	Z = 34		

1			Partia	al Perio	odic Ta	ble (cop	ied fro	m data :	sheet)								18
1.0079 H																	4.0026 He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li 3	Be											B	6 C	_ N	8 O	9 F	Ne 10
22.9898	4 24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg			_		_	0	•	4.0			Al	Si	Р	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078																
K 19	Ca 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37 132.905	38 137.327	39	40 178.49	41 180.948	42 183.85	43 186.207	44 190.2	45 192.22	46 195.08	47 196.967	48 200.59	49 204.383	50 207.19	51 208.980	52 (210)	53 (210)	54 (222)
132.903 Cs	Ba	La-Lu	1/8.49 Hf	Ta	W	Re	Os	I 92.22	195.08 Pt	Au	200.39 Hg	204.383 Tl	207.19 Pb	208.980 Bi	(210) Po	(210) At	(222) Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)		•	•	•	•		
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							

NAME:

7.

Student Number:_____

[9 marks]

(a) Complete the Lewis diagrams for the two molecules whose skeletons are shown below. [2 marks]

(b) Rank the bonds in the two molecules above from shortest to longest. [2 marks] You may group together bonds of the same type.

(c)	Identify the molecular geometry of each carbon atom in both molecules. Answer this question by labeling your answers to part (a).	[3 marks]
(d)	In the space below, redraw each molecule to clearly show its shape.	[2 marks]

 8.
 [5 marks]

 (a)
 Calculate the approximate enthalpy change for the reaction below:
 [4 marks]

 $N_2H_2 \ + \ H_2 \ \rightarrow \ N_2H_4$

(b) Is this process exothermic or endothermic? In ten words or less, justify your answer. [1 mark]

NAM	E: Student Number:	
9.		[5 marks]
(a)	Draw <u>all</u> valid resonance structures for the sulfite ion (SO_3^{2-}) . You must show all non-zero formal charges on the appropriate atoms.	[4 marks]

(b) What is the average S-O bond order in SO_3^{2-2} ?

[1 mark]

10.Draw a valid Lewis diagram for sulfurous acid (H2SO3).[1 mark]You must show all non-zero formal charges on the appropriate atoms.[1 mark]

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

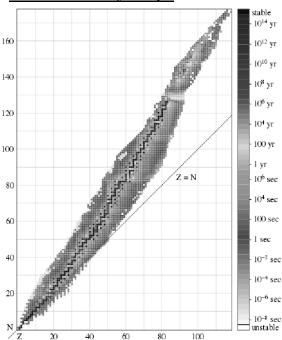
Atomic mass unit (u)	$1.660~539 \times 10^{-27} \text{ kg}$	Planck's constant	$6.626\ 070 \times 10^{-34}\ \mathrm{J}\cdot\mathrm{Hz}^{-1}$
Avogadro's number	$6.022 \ 141 \times 10^{23} \ \text{mol}^{-1}$	Proton mass	1.007 277 u
Bohr radius (a_0)	$5.291\ 772 \times 10^{-11}\ \mathrm{m}$	Neutron mass	1.008 665 u
Electron charge (e)	$1.602\ 177 \times 10^{-19}\ \mathrm{C}$	Rydberg Constant (R _H)	2.179 872 x 10 ⁻¹⁸ J
Electron mass	$5.485~799 \times 10^{-4}$ u	Speed of light in vacuum	2.997 925 x 10 ⁸ m·s ⁻¹
Ideal gas constant (R)	8.314 462 J·mol ⁻¹ ·K ⁻¹	Standard atmospheric pressure	1 bar = 100 kPa
	8.314 462 $\text{m}^3 \cdot \text{Pa} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$		

Formulae

 $c = v\lambda$ E = hv p = mv $\lambda = \frac{h}{p}$ $\Delta x \cdot \Delta p > \frac{h}{4\pi}$

$$r_n = a_0 \frac{n^2}{Z}$$
 $E_n = -R_H \frac{Z^2}{n^2}$ $E_k = \frac{1}{2}mv^2$ $PV = nRT$

$$\Delta E = \Delta mc^2 \qquad A = -\frac{\Delta N}{\Delta t} \qquad A = kN \qquad \ln\left(\frac{N_2}{N_1}\right) = -k(t_2 - t_1) \qquad \ln(2) = k \cdot t_{1/2}$$


Bond Dissociation Enthalpy Values

	$\Delta_{BD}H$ (kJ/mol)
H-H	435
C-H	415
N-H	390
O-H	460
C-C	345
C=C	615
C≡C	835
N-N	160
N=N	420
N≡N	945
0-0	145
0=0	495

The graph at the right shows the band of stability. Stable isotopes are in black. Isotopes that exist but are not stable are shown in varying shades of gray with the shades of gray corresponding to different half-lives.

The original version of the graph used a rainbow colour scale. http://commons.wikimedia.org/wiki/File:Isotopes_and_half-life_eo.svg

Band of Stability Graph

Student Number:____

1				CHE	M 100)0 Per	iodic 7	Fable									18
1.0079																	4.0026
H 1	2											13	14	15	16	17	He 2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	2	4	F	(-	0	Δ	10	11	10	Al	Si	Р	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078																
K	Ca																
19	20																
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							
	1																1
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	

138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré