NAME:	Student Number:					
Spring 2020	Chemistry 1000 Midterm #1A/ 60 marks					
INSTRUCTIONS:	Please read over the test carefully before beginning. This exam consists of 11 questions.					
	If your work is not legible, it will be given a mark of zero.					
	Marks will be deducted for incorrect information added to an otherwise correct answer.					
	Marks will be deducted for improper use of significant figures and for missing or incorrect units.					
	Show your work for all calculations. Answers without supporting calculations will not be given full credit.					
	You may use a calculator.					
	You have 90 minutes to complete this test.					

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked and returned. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/60 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: _____ Course: CHEM 1000 (General Chemistry I) Semester: Spring 2020 The University of Lethbridge

Date: _____

Question	n Breakdown
Q1	/ 4
Q2	/ 8
Q3	/ 3
Q4	/ 5
Q5	/ 4
Q6	/ 6
Q7	/ 4
Q8	/ 4
Q9	/ 6
Q10	/ 4
Q11	/ 12
Total	/ 60

NAME:_____

1.

Student Number:

Complete the following	Complete the following table.							
Symbol	# protons	# neutrons	# electrons					
⁹⁷ ₄₃ Tc								
$^{129}_{53}I^{-}$								
	22	26	18					

Draw and label the following orbitals. Each orbital must be drawn on a labeled set of axes and must show relative phase. You are not required to show any radial nodes.
[8 marks]

			L
(a)	a 5s orbital	(b)	a 4p _y orbital

(c) a $3d_z^2$ orbital

(d) a $3d_x^2-y^2$ orbital

3. The ${}^{20}_{9}F$ nuclide is unstable and will undergo decay to form a more stable nuclide. What is the most probable mode of decay for ${}^{20}_{9}F$? Briefly explain your answer. [3 marks]

Student Number:

4. Thallium has two naturally occurring isotopes. ²⁰³Tl has a natural abundance of 29.524% and an atomic mass of 202.9723 u. Calculate the natural abundance and the atomic mass for ²⁰⁵Tl. **[5 marks]**

[4 marks]

- (a) Draw an orbital occupancy diagram ("orbital box diagram") for a neutral ground state iron atom (Fe). Include all electrons and label all subshells.
- (b) How many valence electrons does a neutral ground state iron atom have?
- (c) Is a neutral ground state iron atom paramagnetic or diamagnetic?

NAME	Student Number:
6.	Write electron configurations for each of the following species in the ground state. Use the noble gas notation, but always show all electrons in the valence shell explicitly.
(a)	Ru ⁴⁺ [6 marks]

- (b) In
- (c) As^{3-}

7. There are seven classes of nuclear reactions. Classify each of the following as one of the seven different types of nuclear reactions. [4 marks]

(a) ${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{152}_{60}Nd. + {}^{81}_{32}Ge + {}^{1}_{0}n$

(b) ${}^{36}_{13}Al + {}^{0}_{-1}e \longrightarrow {}^{26}_{12}Mg$

(c) ${}^{64}_{29}Cu$ \longrightarrow ${}^{64}_{28}Ni$ + ${}^{0}_{1}\beta^{+}$

(d) ${}^{2}_{1}H + {}^{1}_{1}H \longrightarrow {}^{3}_{2}He$

Student Number:

8. A sample of Radon-222 $\binom{222}{86}Rn$ has an initial activity of 7.0 x 10⁴ Bq. After 6.6 days, its activity is 2.1 x 10⁴ Bq. Calculate the half-life of radon-222. [4 marks]

NAME:_____

Student Number:_____

9. Calculate the energy change for the following fission reaction: [6 marks]

 $^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{152}_{60}Nd. + ^{81}_{32}Ge + 3^{1}_{0}n$

(a) Report your answer in J.

(b) Report your answer in J/mol.

10. Radon-222 (^{222}Rn) transmutes to a stable nuclide by emitting α and β particles. The first four steps of this decay series are α -decay, α -decay, β -decay, and β -decay. Write this sequence as four separate, balanced nuclear reactions. [4 marks]

11. Fill in each blank with the word or short phrase that best completes the sentence.

[12 marks]

- (a) In the photoelectric effect experiment, whether or not a current will flow depends on the ______ of the incident light.
- (b) A wave with a wavelength of 12 nm has ______ energy than a wave with a wavelength of 32 nm.
- (c) The ______ states that no two electrons in an atom can have the same set of quantum numbers.

(d) An electron in a 6*f* orbital has $n = _$ and $\ell = _$.

- (e) The maximum number of electrons in a single atom that can have n = 2, $\ell = 0$ and $m_s = -\frac{1}{2}$ is .
- (f) The unit for the equivalent dose of radiation is the ______. The equivalent dose is essentially the ______multiplied by a radiation weighing factor (W_R) .
- (g) A neutral atom of chlorine has _____ core electrons and _____ valence electrons.
- (h) According to the Bohr model of the atom, electrons within an allowed _______ can move without radiating. Bohr calculated the energy of the electron in a hydrogen atom using this equation: ______.

Student Number:_____

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	1.660 539 × 10 ⁻²⁷ kg	Planck's constant	$6.626\ 070 \times 10^{-34}\ J \cdot Hz^{-1}$
Avogadro's number	$6.022 \ 141 \times 10^{23} \ mol^{-1}$	Proton mass	1.007 277 u
Bohr radius (a ₀)	$5.291~772 \times 10^{-11} \text{ m}$	Neutron mass	1.008 665 u
Electron charge (e)	1.602 177 × 10 ⁻¹⁹ C	Rydberg Constant (R _H)	2.179 872 x 10 ⁻¹⁸ J
Electron mass	5.485 799 × 10 ⁻⁴ u	Speed of light in vacuum	2.997 925 x 10 ⁸ m·s ⁻¹

<u>Formulae</u>

$c = \lambda \upsilon$	E = hv	p = mv	$\lambda = \frac{h}{p}$	$\Delta x \cdot \Delta p > \frac{h}{4\pi}$
------------------------	--------	--------	-------------------------	--

$$r_n = a_0 \frac{n^2}{Z}$$
 $E_n = -R_H \frac{Z^2}{n^2}$ $E_k = \frac{1}{2}mv^2$ $\Delta E = \Delta mc^2$

$$N_{2} = N_{1} \left(\frac{1}{2}\right)^{\Delta t/t_{1/2}} \qquad A = -\frac{\Delta N}{\Delta t} \qquad A = kN \qquad \ln\left(\frac{N_{2}}{N_{1}}\right) = -k(t_{2} - t_{1}) \qquad \ln(2) = k \cdot t_{1/2}$$

1			Ch	em 10	00 Sta	ndard	Perio	dic Ta	ble								18
1.0079]																4.0026
Η																	He
1	2	_										13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	2	4	5	(7	0	0	10	11	10	Al	Si	P	S	Cl	Ar
11	12	3	4	5	0	/	ð	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
			1		1				1						1		
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	

Developed by Prof. R. T. Boeré (updated 2016)

NAME:_____

Student Number:

Some Useful Masses

$\frac{4}{2}\alpha$	4.002 603 254 u
$^{1}_{1}p$	1.007 276 467 u
${}^{1}_{0}n$	1.008 664 916 u
$^{0}_{+1}\beta$	0.000 548 579 9 u
$^{0}_{-1}\beta$	0.000 548 579 9 u
$^{235}_{92}U$	235.043 930 u
$^{152}_{60}Nd$	151.924 692 u
⁸¹ ₃₂ Ge	80.928 832 u

Band of Stability Graph

The graph below shows the band of stability. The black dots represent all known stable isotopes.

