\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 8 pages of questions and a formula/periodic table sheet.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
6) You may use a calculator.
7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Tuesday, November $7^{\text {th }}$, 2017 (i.e. 24 hours after you finish writing this test). I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 75$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 1000 (General Chemistry I)
Semester: Fall 2017
The University of Lethbridge
\qquad

Date:
\qquad

1. Fill in each blank with the word or phrase that best completes the sentence. [$\mathbf{1 6}$ marks]

If your answer is an element, you must provide the name and symbol for that element for full credit. For ionic compounds, only the formula is necessary (unless it is a "The name for... is" question).
(a) An example of a metal that reacts with water at room temperature is
\qquad .
(b) An example of a metal that does not react with water at room temperature is
\qquad .
(c) The element whose cations give a violet flame test is \qquad .
(d) The alkali metal with the largest ionization energy is \qquad .
(e) Alkaline earth metals tend to make ions with a charge of \qquad .
(f) The passivation layer on the surface of aluminium metal is made of \qquad .
(g) An example of an ionic compound that gives off carbon dioxide gas when heated is
\qquad .
(h) Two common packing arrangements for atoms in a metal lattice are
and \qquad .
(Alternative phrasing: "Two common types of metal lattice are \qquad and \qquad ")

DO NOT use abbreviations.
(i) As a general rule, lattice energy increases when \qquad increases.
(j) As a general rule, lattice energy decreases when \qquad increases.
(k) The energy released when a neutral atom in the gas phase gains an electron is that element's
\qquad .
(1) The name for NaF is \qquad .
(m) The name for FeS is \qquad .
(n) The name for CoCl_{3} is \qquad .
(o) Dissolving CO_{2} in water makes the water more \qquad .
\qquad Student Number: \qquad
2. Complete the following table. You may find the partial periodic table (copied from the Data Sheet) helpful. Misspelled elements will not get full credit. [6 marks]

Atomic Number (Z)	Symbol	Name
2		
4		
11		
14		
19		
20		

\qquad
\qquad
3.
(a) Write the electron configuration for each of the ions below. Use the noble gas abbreviation. Do NOT abbreviate so much that the valence electrons are not explicitly listed! [3 marks] i. $\quad S e^{2-}$
ii. $\quad \mathrm{Br}^{-}$
iii. Cl^{-}
(b) Rank the ions from smallest to largest (by radius).
smalles \qquad
\qquad
\qquad largest
(c) Justify your ranking.
4. For each of the following statements, circle whether it is TRUE or FALSE. IF a statement is FALSE, briefly explain why or provide an example that proves the statement to be false. This is required to get credit for choosing "FALSE".
(a) $\quad \mathrm{Na}^{+}$is highly reactive and does not occur in nature.

TRUE / FALSE
(b) All salts of group 2 metals are soluble in water.

TRUE / FALSE
(c) The reactivity of group 2 metals increases with increasing mass.

TRUE / FALSE
\qquad
5. Write balanced chemical equations for each of the following reactions. Include states of matter. If no reaction occurs, write "NO REACTION".
(a) Lithium metal is heated with nitrogen gas.
(b) Potassium metal is added to water.
(c) Barium carbonate $\left(\mathrm{BaCO}_{3}\right)$ is added to a solution of aqueous acid.
(d) Aqueous sodium chloride is subjected to electrolysis in the chlor-alkali process.
6. Beryllium and aluminium are related by the diagonal relationship, indicating that their chemistry shows some similarities.
(a) Both beryllium metal and aluminium metal react with aqueous base. Write a balanced chemical equation for one of these reactions.
[2 marks]
(b) Give another example of the diagonal relationship between beryllium and aluminium.
[1 mark]
(c) Give the names of another pair of elements that have a similar diagonal relationship.
\qquad
\qquad
7. Aluminium metal is prepared by electrolysis of molten $\mathrm{Al}_{2} \mathrm{O}_{3}$.
[7 marks]
(a) Why is it necessary for the $\mathrm{Al}_{2} \mathrm{O}_{3}$ to be melted before it can be electrolyzed? [1 mark]
(b) Aluminium ore (bauxite) is not pure. Give an example of one contaminant that must be removed before the $\mathrm{Al}_{2} \mathrm{O}_{3}$ can be electrolyzed.
[1 mark]
(c) How is the bauxite purified before it is electrolyzed? [5 marks]

- Write balanced chemical equations for each reaction in the purification process. Your last equation should have $\mathrm{Al}_{2} \mathrm{O}_{3}$ as a product. Include states of matter.
- Identify any points at which a separation is necessary (e.g. a filtration or similar) and clearly identify which component contains the aluminium.

8. Once pure $\mathrm{Al}_{2} \mathrm{O}_{3}$ has been obtained, it is electrolyzed.
[7 marks]
(a) Complete the following chemical equation for the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ by balancing it and adding states of matter.

$$
\ldots \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{O})+\ldots \mathrm{C}(\mathrm{O}) \rightarrow \ldots \ldots \mathrm{Al}(\mathrm{O})+\ldots \mathrm{CO}_{2}(\mathrm{O})
$$

(b) What mass of carbon must be consumed in order to produce 2.50 tons of aluminium metal (1 ton = 1000 kg)?

Report your answer in kg.
\qquad
\qquad
9.
[10 marks]
(a) Complete the table below. If more than one valid resonance structure can be drawn for the ion, draw all valid resonance structures.
Include any non-zero formal charges on the appropriate atom(s).

Chemical Formula	
$N O_{2}^{-}$	

(b) Based on your Lewis diagram(s),
i. What is the average $\mathrm{N}-\mathrm{O}$ bond order in NO_{2}^{-}?
ii. What is the average $\mathrm{N}-\mathrm{O}$ bond order in NO_{2}^{+}?
(c) Based on your Lewis diagram(s),
i. What is the bond angle for NO_{2}^{-}?
ii. What is the bond angle for NO_{2}^{+}? Use \sim to indicate an angle that is not exact.
\qquad
\qquad
10.
(a) Complete the table below. Draw one valid Lewis diagram for each molecule. [6 marks] Include any non-zero formal charges on the appropriate atom(s).

Chemical Formula	Lewis Diagram	Electron Group Geometry (in words)	Molecular Geometry (in words)
$P F_{3}$			
$S F_{4}$			

(b) Re-draw each of the molecules to show the correct geometry according to VSEPR.

You do not need to label bond angles.
[2 marks]
i. $\quad P F_{3}$
ii. $\quad S F_{4}$
\qquad

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	$1.660539 \times 10^{-27} \mathrm{~kg}$	Planck's constant	$6.626070 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~Hz}^{-1}$
Avogadro's number	$6.022141 \times 10^{23} \mathrm{~mol}^{-1}$	Proton mass	1.007277 u
Bohr radius $\left(\mathrm{a}_{0}\right)$	$5.291772 \times 10^{-11} \mathrm{~m}$	Neutron mass	1.008665 u
Electron charge (e)	$1.602177 \times 10^{-19} \mathrm{C}$	Rydberg Constant $\left(\mathrm{R}_{\mathrm{H}}\right)$	$2.179872 \mathrm{x} 10^{-18} \mathrm{~J}$
Electron mass	$5.485799 \times 10^{-4} \mathrm{u}$	Speed of light in vacuum	$2.997925 \mathrm{x} \mathrm{10} 0^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Ideal gas constant (R)	$8.314462 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$	Standard atmospheric pressure	$1 \mathrm{bar}=100 \mathrm{kPa}$
	$8.314462 \mathrm{~m}^{3} \cdot \mathrm{~Pa} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$		

Formulae

$c=\lambda v$
$E=h v$
$p=m v$
$\lambda=\frac{h}{p}$
$\Delta x \cdot \Delta p>\frac{h}{4 \pi}$
$r_{n}=a_{0} \frac{n^{2}}{Z} \quad E_{n}=-R_{H} \frac{Z^{2}}{n^{2}} \quad E_{k}=\frac{1}{2} m v^{2} \quad P V=n R T$
$\Delta E=\Delta m c^{2} \quad A=-\frac{\Delta N}{\Delta t} \quad \ln \left(\frac{N_{2}}{N_{1}}\right)=-k\left(t_{2}-t_{1}\right) \quad \ln (2)=k \cdot t_{1 / 2}$

1	CHEM 1000 Partial Periodic Table																18
1	2											13	14	15	16	17	2
3	4											5	${ }_{6}^{12.011}$	$\stackrel{14.0067}{\mathbf{N}}$	${ }_{\text {O }}^{15.9944}$	${ }_{9}^{18.9984}$	${ }^{\substack{20.1797 \\ 10 \\ 10}}$
11	12	3	4	5	6	7	8	9	10	11	12	${ }_{13}{ }^{26.9815}{ }^{\mathbf{A l}}$	14	${ }_{15}^{30.9738}$	$\begin{array}{\|l\|l\|} \hline 32.066 \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline 35.4527 \\ \hline 17 \\ \hline 17 \end{array}$	$\begin{array}{\|c} 10.948 \\ \text { ABr } \\ \hline 18 \end{array}$
19	20	${ }_{\text {Sc }}^{44.959}$	${ }_{\text {a }}^{47.88}$	$\mathrm{Va}^{50.9415}$	${ }_{24}^{51.9961}$	${ }_{\text {chen }}^{\text {54.9380 }}$	$\underset{\text { Fe }}{\substack{\text { 55, } \\ \text { Fe }}}$	${ }_{\text {co }}^{58.932}$	$\underbrace{58.693}_{\text {cis }}$	$\begin{gathered} \mathbf{6 3 . 5 4 6} \\ \mathbf{C u} \end{gathered}$	${ }_{\text {Cn }}^{65.39}$	${ }_{\text {Ga }}^{69.723}$	$\begin{array}{\|c} 72.61 \\ \mathbf{G e} \end{array}$	33	${ }_{\text {78.96 }}^{\text {Se }}$	${ }_{3}^{79.904}$	36
$\begin{array}{\|l} \hline 85.4678 \\ \text { Rb } \end{array}$	${ }_{\text {88 }}^{87.62} \mathrm{sr}$	$\stackrel{21}{88.9059}_{\mathbf{z}_{39}}$	$\begin{array}{\|c\|} \hline \frac{22}{91.224} \\ \mathbf{z 0} \\ \hline \mathbf{z r} \end{array}$	$\begin{array}{\|c} \hline 92.9064 \\ \mathbf{N b} \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ \hline 95.94 \\ \text { Mo } \\ \hline \end{array}$	${ }_{43}^{\text {Tc }}{ }^{\text {(15 }}$	$\begin{array}{\|c\|} \hline 101.07 \\ \mathbf{R u} \end{array}$			$\begin{array}{\|l\|} \hline 107.868 \\ \mathbf{A g} \\ \hline 47 \end{array}$	$\begin{gathered} 122.411 \\ \mathbf{C d} \end{gathered}$	114.82 In	$\begin{array}{\|l} \hline 32 \\ \hline 18.710 \\ \mathbf{S n} \end{array}$	121.757 $\mathbf{S b}$ 51		${ }_{53}^{126.905}$	131.29 Xe 54 122
$\begin{array}{\|c} 37 \\ \hline \begin{array}{c} 32.905 \\ \text { Cs } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 38 \\ \hline 137.327 \\ \text { Ba } \end{array}$	39	40 178.49 $\mathbf{7 f f}$	41 180.948 Ta	$\stackrel{42}{183.85}$	43 186.207 18 18	$\begin{array}{\|c} \hline 44 \\ \hline 190.2 \\ \hline 0 \text { os } \end{array}$	45 192.22 Ir	46 15.08 $\mathbf{P t}$	47 196.967 $\mathbf{A u}$	$\begin{array}{\|c\|} \hline 48 \\ \hline 200.59 \\ \mathbf{H g} \end{array}$	$\frac{49}{204.383} \begin{gathered} \mathbf{T l} \end{gathered}$	$\begin{array}{\|c} 50 \\ \hline 207.19 \\ \hline \mathbf{P b} \end{array}$	51 208.980 $\mathbf{B i}$	52 (210) Po	53 (210) $\mathbf{A t}$	54 (222) $\mathbf{R n}$
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	
$\begin{gathered} (223) \\ \mathbf{F r} \\ \hline \end{gathered}$	$\begin{aligned} & 226.025 \\ & \mathbf{R a} \end{aligned}$	Ac-Lr	$\begin{gathered} (265) \\ \mathbf{R f} \end{gathered}$	$\underset{\substack{(268) \\ \mathbf{D b}}}{\substack{\text { (} \\ \hline}}$	$\begin{gathered} (271) \\ \hline \mathbf{S g} \\ \hline \end{gathered}$	(270) Bh	(277) Hs	$\begin{aligned} & \hline(276) \\ & \mathbf{M t} \\ & \mathbf{M} \end{aligned}$	$\begin{array}{\|c} \hline(281) \\ \mathbf{D s} \end{array}$	$\begin{gathered} (280) \\ \mathbf{R g} \\ \hline \end{gathered}$	$\underset{(}{(285)} \mathbf{C n}$		${ }_{\text {a }}{ }_{\text {(289) }}^{\text {Fl }}$	$\underset{\substack{\text { M } \\ \text { Mc } \\ 115}}{(288)}$	${ }_{\text {che }}^{\substack{\text { (293) } \\ \text { LV }}}$	${ }_{117}^{\text {T294) }}$	${ }_{118}^{\text {Og }}$
		$\begin{array}{\|c} \hline 138.906 \\ \mathbf{L a} \\ \hline \end{array}$ 57	$\begin{aligned} & \begin{array}{l} 140.115 \\ \text { Ce } \end{array} \\ & 58 \end{aligned}$	$\begin{aligned} & 140.908 \\ & { }_{59}^{192} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 144.24 \\ \text { Nd } \\ 60 \end{array} \end{aligned}$	$\begin{array}{\|l} \hline(145) \\ \mathbf{P m} \\ \hline \end{array}$ 61	$\begin{array}{\|c} \hline 150.36 \\ \mathrm{Sm} \end{array}$ 62	$\|$151.965 Eu	$\begin{gathered} 157.25 \\ \text { Gd } \\ 64 \end{gathered}$	\square Tb	$\begin{array}{\|c\|} \hline 162.50 \\ \text { Dy } \\ 66 \end{array}$	$\begin{array}{\|l\|} \hline 164.930 \\ \mathbf{H o} \end{array}$	$\begin{array}{\|c\|} \hline 167.26 \\ \mathbf{E r} \\ 68 \\ \hline \end{array}$	$\begin{aligned} & 168.934 \\ & \mathbf{T m} \\ & 69 \end{aligned}$		$\begin{aligned} & 174.967 \\ & \mathbf{Z u} \end{aligned}$	
		227.028 ${ }_{89}{ }^{\text {Ac }}$	$\begin{array}{\|c} \hline 20 \\ \hline \text { 232.038 } \\ \hline \end{array}$ 90	${ }_{91}^{231.036}$	$\begin{array}{\|l\|l\|} \hline 238.029 \\ { }_{92}^{20} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 237.048 \\ \mathbf{N p} \\ 93 \\ \hline \end{array}$		$\begin{gathered} \text { (243) } \\ \text { Am } \\ 95 \end{gathered}$	$\begin{array}{\|c} \hline 04 \\ \hline \mathbf{C m} \\ 96 \end{array}$	$\begin{gathered} (247) \\ \mathbf{B k} \\ 97 \end{gathered}$		$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \prime \prime \\ \text { (252) } \\ \text { Es } \end{array}\right. \\ \hline \end{array}$	$\begin{gathered} 00 \\ \hline \text { Fm7 } \\ \text { Fi00 } \end{gathered}$	$\begin{gathered} c 9 \\ \hline \mathbf{(2 5 8)} \\ \mathbf{M d X} \end{gathered}$	$\begin{gathered} 0 \\ \hline \text { (259) } \\ \text { No } \\ \text { 102 } \end{gathered}$	$\xrightarrow{(260)} \begin{gathered}\text { Lr } \\ 103\end{gathered}$	

