NAME:	Student Number:
Spring 2020	Chemistry 1000 Midterm #2A/ 80 marks
INSTRUCTIONS:	1) Please read over the test carefully before beginning. This exam consists of 10 questions.
	2) If your work is not legible, it will be given a mark of zero.
	3) Marks will be deducted for incorrect information added to an otherwise correct answer.
	4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
	5) Show your work for all calculations. Answers without supporting calculations will not be given full credit.
	6) You may use a calculator.
	7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked and returned. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/80 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: _____ Course: CHEM 1000 (General Chemistry I) Semester: Spring 2020 The University of Lethbridge Date: _____

Question Breakdown

Q1	/ 18
Q2	/ 6
Q3	/ 8
Q4	/ 5
Q5	/ 2
Q6	/ 8
Q7	/ 5
Q8	/ 12
Q9	/ 8
Q10	/ 8

|--|

1.	Fill in each blank with the word or phrase that best completes the sentences. When choices are offered in brackets after the blank, choose one by either circling it or writing it in the blank. <i>If your answer is an element, you must provide the <u>name and symbol for that</u> <u>element for full credit.</u> [18 marks]</i>		
(a)	The ability of an element to both hold onto its own electrons and attract electrons is referred		
	to as the of that element.		
(b)	The thin protective oxide layer on a metal's surface is known as thelayer.		
(c)	The element whose cation gives a green flame is		
(e)	The noble gases refer to the group elements of the periodic table.		
(f)	Atomic radius generally (<i>increases/decreases</i>) down a group.		
(g)	The gas that is produced when strontium metal reacts with water is		
(h)	Energy is (consumed/released) when a covalent bond is formed.		
(i)	An ionic compound will have a large lattice energy when the charge of the ions is (<i>large/small</i>) and when the distance of the ions is (<i>large/small</i>).		
(j)	A metal lattice whose layers follow the ABCA pattern is referred to as having packing.		
(k)	Two metals who have a diagonal relationship with each other areand		
(1)	The scientific name for K ₂ O is		
(m)	The scientific name for TiCl ₄ is		
(n)	The chemical formula for copper (II) sulfide is		
(o)	The group 17 elements are referred to as the		
(p)	During the chlor-alkali process (electrolysis of aqueous sodium chloride) the species that is oxidized is and the species that is reduced is		

2. Complete the following table. You may find the partial periodic table (copied from the Data Sheet) helpful. *Misspelled elements will not get full credit.* [6 marks]

Atomic Number (Z)	Symbol	Name
10		
11		
20		
23		
33		
34		

3.

[8 marks]

(a) Identify the neutral element (<u>name and symbol</u>) corresponding to each valence-shell orbital box diagram. [4 marks]

(b) Rank the four neutral elements in part (a) from smallest to largest (use their elemental symbols): [2 marks]

smallest	 	 	largest

(c) Which element is most likely to form a -1 anion? [1 marks]

(d) Which element is most likely to have the highest third ionization energy (E_{i3}) ?

[1 marks]

Student Number:

4. When magnesium carbonate is thermally decomposed, it produces magnesium oxide and carbon dioxide: [5 marks]

$$MgCO_{3(s)} \rightarrow MgO_{(s)} + CO_{2(g)}$$

What volume of carbon dioxide gas is produced when 12.622 g of MgCO₃ is thermally decomposed? Assume that the carbon dioxide gas is stored at a temperature of 22.45 °C and a pressure of 1.020 bar (102.0 kPa).

Report your answer in L.

5. List 2 ways in which metals and nonmetals differ.

[2 marks]

NAMI	E: Student Number:	
6.	Write balanced chemical equations for each of the following reactions. Include states of matter. If no reaction occurs, write "NO REACTION"	[8 marks]
(a)	Magnesium metal reacts with nitrogen gas.	[2 marks]
(b)	Barium metal reacts with water.	[2 marks]
(c)	Calcium carbonate (CaCO ₃) is added to a solution of aqueous acid $(H_{(a}^+))$	_{q)}). [2 marks]
(d)	Strontium metal reacts with chlorine gas.	[2 marks]
7.	Beryllium oxide is amphoteric, that is, it reacts with both acids and bas	es. [5 marks]
(a)	Write a balanced chemical equation for its reaction with aqueous acid <i>Include states of matter</i> .	$(H^+_{(aq)}).$ [2 marks]

- (b) Write a balanced chemical equation for its reaction with aqueous base $(OH_{(aq)})$. Include states of matter. [2 marks]
- (c) What element does beryllium share a diagonal relationship with? [1 marks]

NAM	IE: S	tudent Number:
8.	For each of the following molecules/ions:	[12 marks]
•	draw a valid Lewis Diagram Identify its Electron Group Geometry Identify its Molecular Geometry	
(a)	SnCl ₂ . Include any non-zero formal charges on the a	ppropriate atom(s). [4 marks]

(b) BrF_3 . [4 mark] Include any non-zero formal charges on the appropriate atom(s).

 TeF_5^- . (c) Include any non-zero formal charges on the appropriate atom(s).

[4 mark]

NAME:		Student Number:	
9.	The carbonate ion has the chemical for	mula CO_3^{2-} .	[8 marks]

(a) Draw all three resonance structures of CO_3^{2-} which have minimized formal charge. Include any non-zero formal charges on the appropriate atom(s). [4 marks]

(b) What is the average C - O bond order for the carbonate ion? [1 mark]

(c) Carbonic acid has the chemical formula H_2CO_3 . Draw a Lewis diagram for H_2CO_3 in which you have minimized formal charge. [2 marks] Include any non-zero formal charges on the appropriate atom(s).

(d) Compare the lengths of the C - O bonds in H_2CO_3 . Which C - O bond(s) do you expect to be longer/shorter? [1 mark]

- 10. A nitrile oxide (HCNO) is a simple organic molecule which contains 1 hydrogen, 1 carbon, 1 nitrogen, and 1 oxygen atom. It has two valid resonance structures. [8 marks]
- (a) Draw the two Lewis diagrams for each of its resonance structures given that the connectivity of nitrile oxide is H—C—N—O. [4 mark] Include any non-zero formal charges on the appropriate atom(s).

- (b) For both resonance structures, indicate the molecular geometry around each of the central C and N atoms. [2 marks]
- (c) Of the two resonance structures, which one do you think better represents the overall structure of the molecule? Briefly explain your reasoning. [2 mark]

Some Useful Constants and Formulae

Student Number:_____

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	1.660 539 × 10 ⁻²⁷ kg	Kelvin temperature scale	0 K = -273.15 °C
Avogadro's number	$6.022 \ 141 \times 10^{23} \ mol^{-1}$	Planck's constant	$6.626\ 070 \times 10^{-34}\ J\cdot Hz^{-1}$
Bohr radius (a ₀)	$5.291\ 772 \times 10^{-11}\ m$	Proton mass	1.007 277 u
Electron charge (e)	$1.602\ 177 \times 10^{-19}\ \mathrm{C}$	Neutron mass	1.008 665 u
Electron mass	5.485 799 × 10 ⁻⁴ u	Rydberg Constant (R _H)	2.179 872 x 10 ⁻¹⁸ J
Ideal gas constant (R)	8.314 462 J·mol ⁻¹ ·K ⁻¹	Speed of light in vacuum	2.997 925 x 10 ⁸ m·s ⁻¹
	8.314 462 m ³ ·Pa·mol ⁻¹ ·K ⁻¹	Standard atmospheric pressure	1 bar = 100 kPa
		Volume	$1000 L = 1 m^3$

<u>Formulae</u>

$c = \lambda v$	E = hv	p = mv	$\lambda = \frac{h}{n}$	$\Delta x \cdot \Delta p > \frac{h}{4\pi}$
			ρ	472

$$r_n = a_0 \frac{n^2}{Z} \qquad \qquad E_n = -R_H \frac{Z^2}{n^2} \qquad \qquad E_k = \frac{1}{2}mv^2 \qquad \qquad PV = nRT$$

$\Delta E = \Delta mc^2$	$A = -\frac{\Delta N}{\Delta t}$	A = kN	$\ln\!\left(\frac{N_2}{N_1}\right) = -k(t_2 - t_1)$	$\ln(2) = k \cdot t_{1/2}$
--------------------------	----------------------------------	--------	---	----------------------------

1	Chem 1000 Standard Periodic Table															18	
																	4.0026
1	2											13	14	15	16	17	2 He
6.041	4	1										10.011	12.011	14.0067	15 0004	10 0004	-
0.941												10.811 D	12.011 C	14.0007 N	13.9994	18.9984 E	
3	4											5	6	7	8	9 9	10
5	24.3050											5	0	30.9738	32.066	35.4527	39,948
	Mg													Р	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983		44.9559	47.88		51.9961			58.9332		63.546	65.39		72.61			79.904	
K		Sc	Ti		Cr			Со		Cu	Zn		Ge			Br	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025	Ao I n	(265)	(268) Dh	(2/1)	(270) DL	(277) II.	(276)	(281) Da	(280) Da	(285)	(284)	(289)	(288)	(293)	(294)	(294)
67 67	ка ••	AC-LI	KI	105	5g	BI 107	108	100	DS	Kg	U I	112	FI		LV	15	Ug
0/	00		104	105	100	107	108	109	110	111	112	115	114	115	110	11/	116
		138 906	140 115	140 908	144 24	(145)	150.36	151 965	157.25	158 925	162 50	164 930	167.26	168 934	173.04	174 967	
		La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	

NAME:_____