\qquad
\qquad
\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 7 pages of questions, a blank "overflow" page and a periodic table page.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) Calculators are not permitted.
5) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Tuesday, February $11^{\text {th }}$, 2014. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 50$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature:
Date: \qquad
Course: CHEM 2000 (General Chemistry II)
Semester: Spring 2014
The University of Lethbridge

Question Breakdown

Q1	$/ 5$
Q2	$/ 24$
Q3	$/ 15$
Q4	16

Total $\quad / 50$
\qquad
\qquad

1. Consider the following molecule in accordance with valence bond theory:

(a) What is the hybridization for each of the carbon atoms in this molecule? [3 marks]

Carbon \#	Hybrid orbital
C_{1}	
C_{2}	
C_{3}	
C_{4}	
C_{5}	
C_{6}	

Carbon \#	Hybrid orbital
C_{7}	
C_{8}	
C_{9}	
C_{10}	
C_{11}	
C_{12}	

(b) How many σ bonds are there in this molecule? [1 mark]
(c) How many π bonds are there in this molecule? [1 mark]
\qquad
\qquad
\qquad
2.
[24 marks]
(a) Construct a valence molecular orbital diagram for NO^{+}. Label all atomic and molecular orbitals on your diagram and include tie lines to show the linear combinations that form each molecular orbital. Place the correct number of valence electrons into the atomic orbitals as well as the molecular orbitals. It is not necessary to draw pictures of the orbitals for this part of the question. [9 marks]
(b) On the diagram above, clearly label the highest occupied molecular orbital(s) of NO^{+}as the "HOMO"(s). In the space below, draw a picture of this/these molecular orbital(s). Clearly indicate the phase, location of the nuclei, and relative amounts of electron density on each atom. [3 marks]
(c) On the diagram above, clearly label the lowest unoccupied molecular orbital(s) of NO^{+}as the "LUMO"(s). In the space below, draw a picture of this/these molecular orbital(s). Clearly indicate the phase, location of the nuclei, and relative amounts of electron density on each atom. [3 marks]
\qquad
\qquad
\qquad
2. continued
(d) Write the valence orbital occupancy (i.e. electron configuration) in line notation for NO^{+}. [1 mark]
(e) Provide a molecular formula for one neutral diatomic molecule that is isoelectronic with NO^{+}. [1 mark]
(f) Draw the Lewis structure for NO^{+}. What $\mathrm{N}-\mathrm{O}$ bond order does your Lewis diagram predict? [2 marks]
(g) What bond order does your MO treatment predict for NO^{+}? Does it agree with the bond order from the Lewis diagram? [2 marks]
(h) What is the bond order if we add an electron to NO^{+}(i.e. what is the bond order in neutral NO)? [1 mark]
(i) Is the $\mathrm{N}-\mathrm{O}$ bond strengthened or weakened in NO versus NO^{+}? Briefly explain why or why not. [1 mark]
(j) Which of the following molecules is paramagnetic: $\mathrm{NO}^{+}, \mathrm{NO}, \mathrm{NO}^{-}$. [1 mark]
\qquad
\qquad
\qquad
3.
[15 marks]
The valence molecular orbital diagram for planar nitryl fluoride, $\mathrm{NO}_{2} \mathrm{~F}$ (nitrogen is the central atom) is shown below. Note that the σ or π character of each MO is indicated, but NOT the nature of the overall interaction (i.e. whether it has bonding, antibonding, or non-bonding character).

(a) Draw the Lewis structure of $\mathrm{NO}_{2} \mathrm{~F}$. Include any possible resonance structures for this molecule. [2 marks]
(b) What is the bond order for NO (hint: ignore the $N-F$) in $\mathrm{NO}_{2} \mathrm{~F}$ according to your Lewis structure(s)? [1 mark]
\qquad
\qquad
\qquad
3. continued
(c) Five orbital pictures for $\mathrm{NO}_{2} \mathrm{~F}$ are provided below (they are all in the same orientation). Four of them belong to π MOs, while one is a σ MO. In the space below each picture, identify the four π MOs and one σ MO, and assign the correct labels for the π MOs only (the sigma MO can just be labeled as σ to differentiate it from the π MOs). [5 marks]

\qquad
\qquad
\qquad
3. continued.
(d) Of the four π MOs shown: [4 marks]

Which should be considered as bonding π MOs? Justify your answer.

Which should be considered as antibonding π MOs? Justify your answer.

Which should be considered as non-bonding π MOs? Justify your answer.
(e) Fill in the valence electrons for the MO diagram of nitryl fluoride. How many electrons are in σ MOs? How many are in π MOs? [2 marks]
(f) How many normal modes of vibration should $\mathrm{NO}_{2} \mathrm{~F}$ have? [1 mark]

NAME: \qquad Section: \qquad Student Number: \qquad
4. [6 marks]
Provide definitions for the following terms, and where appropriate give an example of each.
(a) intrinsic semiconductor
(b) extrinsic semiconductor
(c) ultraviolet photoelectron spectroscopy

NAME: \qquad
\qquad Student Number:

Overflow Page

If you use this page for any answers, please clearly indicate which question is being answered and make sure you note on the page for the question itself that the answer continues here.

1	Chem 2000 Standard Periodic Table																18
1.0079	2																4.0026
\mathbf{H}												13	14	15	16	17	${ }_{2} \mathrm{He}$
6.941	9.0122	3	4	5	6	7	8	9	10	11	12	10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											B	C	N	0	F	Ne
3												5	6	7	8	9	
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg											Al	${ }^{\text {Si }}$	P	S	${ }^{\text {Cl }}$	Ar
11	12											13	14	15	16	17	
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	$\mathbf{R e}$	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111							

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$ 57	${ }_{-0}^{140.115}$	$\begin{gathered} 140.908 \\ \mathbf{P r} \end{gathered}$ 59	$\begin{array}{\|c\|} \hline 144.24 \\ \mathbf{N d} \\ 60 \end{array}$	$\begin{aligned} & \hline(145) \\ & \text { Pm } \end{aligned}$ 61	$\begin{gathered} 150.36 \\ \mathbf{S m} \end{gathered}$ 62	$\begin{gathered} 151.965 \\ \mathbf{E u} \end{gathered}$ 63	157.25 Gd	$\begin{gathered} 158.925 \\ \text { Tb } \end{gathered}$ 65	$\begin{gathered} \hline 162.50 \\ \text { Dy } \end{gathered}$	$\begin{gathered} 164.930 \\ \text { Ho } \end{gathered}$ 67	$\begin{gathered} 167.26 \\ \mathbf{E r} \end{gathered}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \end{gathered}$	$\begin{gathered} \mathbf{C B b}_{70}^{173.04} \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \end{gathered}$
57	58	59	60	61	62	63	64	65	66	67	(257)	69	(259)	${ }^{(260)}$
$\begin{gathered} 227.028 \\ \mathbf{A c} \end{gathered}$ 89	$\begin{aligned} & 232.038 \\ & \text { Th } \\ & 90 \end{aligned}$	$\begin{gathered} 231.036 \\ \mathbf{P a} \end{gathered}$	${ }_{92}^{238.029} \mathbf{U}^{29}$	$\begin{aligned} & 237.048 \\ & \mathbf{N p} \end{aligned}$	$\begin{gathered} \hline(240) \\ \mathbf{P u} \end{gathered}$	$\underbrace{(243)}_{95}$	$\begin{gathered} (247) \\ \mathbf{C m} \end{gathered}$	$\overline{(247)}$ Bk	$\stackrel{(251)}{(25)}$	$\begin{gathered} \hline(252) \\ \text { Es } \end{gathered}$	$\begin{aligned} & \hline(257) \\ & \mathbf{F m} \end{aligned}$	$\begin{aligned} & \hline(258) \\ & \text { Md } \end{aligned}$	(259)	${ }_{\text {(260) }}^{\mathbf{L r}}$
89	90	91	92	93	94	95					100	101	102	103

Developed by Prof. R. T. Boeré

