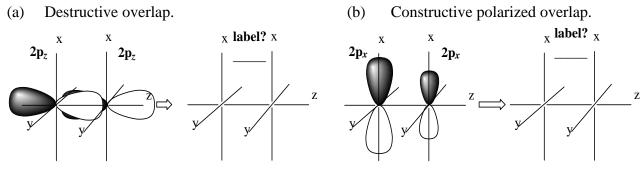
NAME:	Section: Student Number:
Spring 2015	Chemistry 2000 Midterm #1A/ 55 marks
INSTRUCTIONS:	 Please read over the test carefully before beginning. You should have 5 pages of questions, a blank "overflow" page and a periodic table page. If your work is not legible, it will be given a mark of zero. Marks will be deducted for incorrect information added to an otherwise correct answer. Calculators are not permitted. You have 90 minutes to complete this test.

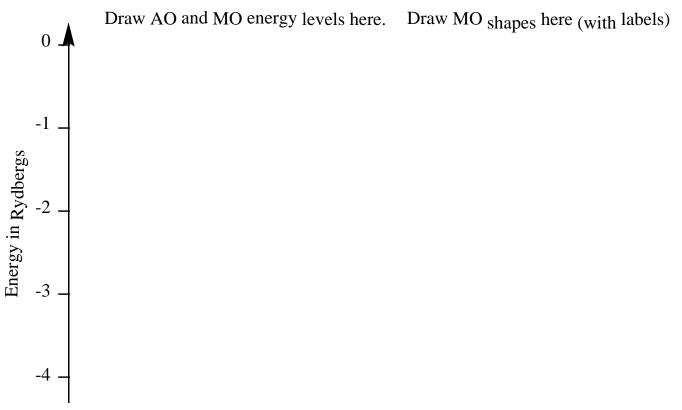
Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Tuesday, February 10th, 2015. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/55 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.


Signature: ____

Course: CHEM 2000 (General Chemistry II) Semester: Spring 2015 The University of Lethbridge Date:

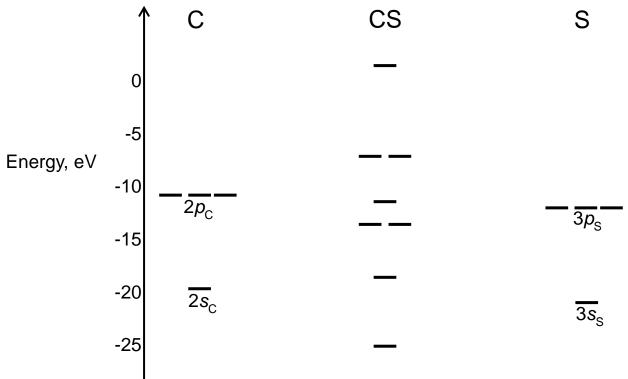
Question Breakdown				
Q1	/ 6			
Q2	/ 4			
Q3	/ 15			
Q4	/ 14			
Q5	/ 9			
Q6	/ 3			
Q7	/ 4			


Total	/ 55
-------	------

- 1. Fill in each blank with the word or short phrase that best completes the sentence. **[6 marks]**
- (a) An exact solution to the Schrödinger wave equation can be derived for H₂⁺ by "freezing" the separation of the two H nuclei, an approach which is known as the ______ approximation.
- (b) The parameter defined in order to correlate the degree of bonding in MO theory with the number of bonds counted from a Lewis diagram is called the _____.
- (c) Electron density in a molecule is expected to be highest in what location?
- (d) The frontier molecular orbital (FMO) that is associated with a molecule's ability to act as a *donor* (i.e. as a Lewis base) is known by the following acronym: ______.
- (e) In *linear* and *planar* molecules, the ______ separation can be used to simplify the treatment of bonding in MO theory.
- (f) In the MO description of bonding in the molecule hydrogen fluoride (HF), the $2p_x$ and $2p_y$ orbitals of fluorine have 100% ______ character.
- 2. Draw <u>and</u> label the correct *shape* of the LCAO-MO for the indicated interaction. Include correct shading. [4 marks]

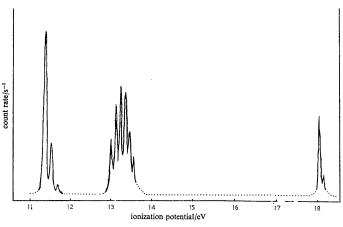
3. Construct an **atomic orbital – molecular orbital** interaction diagram for difluorine (F₂).

- (a) Write the atomic electron configuration for a neutral atom of F <u>and</u> identify the valence electrons.
- (b) How many valence electrons does *the difluorine molecule* (F₂) possess?
- (c) Which valence AOs of F have σ symmetry?
- (d) Which valence AOs of F have π symmetry?
- (e) Show energy levels at left as indicated and sketch the resultant LCAO-MOs that are correct in shape and in phase (shading) at right. Be sure to label all the MOs. Make use of the provided energy scale and show both the atomic and molecular energy levels in your diagram. Where possible assign the *dominant bonding character of each MO* using the usual label markers. Populate your MO diagram with the correct no. of electrons!


(f) Determine the *bond order* in F₂. Show your work clearly.

(g) Explain clearly, with reference to the MO diagram, why the molecular ion F_2^{2-} cannot exist. What alternative form of this anion does exist and why?

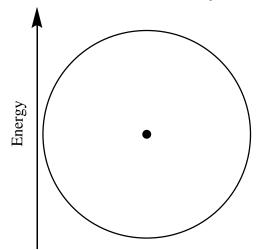
4.


[14 marks]

- (a) Carbon monosulfide (CS) is an analogue to carbon monoxide that has been investigated in detail. It forms many interesting metal coordination complexes. Complete the AO-MO interaction diagram for CS by:
 - i. Sketching and naming *only* the molecular orbitals (MOs).
 - ii. Adding the correct # of valence electrons <u>only to the MOs</u> for the ground electronic state of CS.

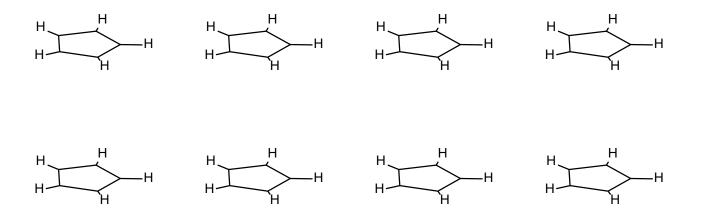
(b) Write the valence molecular electron configuration of CS in the standard format for diatomics:

- (c) Consider the UV-PES diagram for CS shown at right. *Assign* the ionization processes to the MO diagram *by labelling the peaks with the corresponding MO labels from your diagram above.*
- i. Which peak corresponds to ionization from the highest occupied molecular orbital (HOMO)?
- ii. Which peak(s) correspond to electrons ionized from bonding MOs? Explain.



Simplified UV-PES spectrum of carbon monosulfide (22.2 eV photons)

iii. Which peak(s) correspond to electrons ionized from non-bonding MOs? Explain.


[9 marks]

(a) Use the "Frost circle" approach to generate an approximate valence π -MO energy-level diagram (energy levels only!) for cyclic hydrocarbon species of the form $[C_5H_5]^x$. Be sure to label each molecular energy level on your diagram with the correct label. Indicate the *dominant* bonding character with the usual symbols. Pay attention to multiplicity of levels!

(b) Sketch approximate orbital shapes for each of the π -MOs in your MO diagram. *Fill in as many of the rings as required to complete this project*. Clearly label each MO you decide to draw. Show the resultant \perp nodes.

It is sometimes easier just to draw the atomic p_z orbitals with the correct relative shading (phase).

(c) Which value of "x" (i.e. which charge of $[C_5H_5]^x$) will provide the *optimal* π -*bonding* in this type of hydrocarbon? Show your work or explain your reasoning.

NAME:	Section:	Student Number:	

[3 marks]

- 6. Use Valence Bond theory to consider the bonding in acetonitrile (CH₃CN).
- (a) Draw the best Lewis structure for CH₃CN.
 The three larger atoms are connected C-C-N with three H attached to the terminal C.

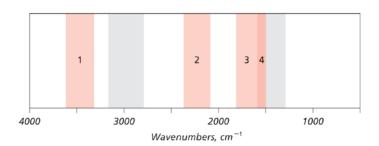
(b) What is the hybridization of each of the following atoms in CH₃CN: $C (of CH_3) =$ C (of CN) =

- 7. Please answer (a) and (b) side by side so that the relative scales are obvious. [4 marks]
- (a) Draw the band structure of potassium (b) Draw the band structure of silicon.

(c) One of these two elements is an insulator. Which one? Explain your choice.

Overflow Page

If you use this page for any answers, please clearly indicate which question is being answered and make sure you note on the page for the question itself that the answer continues here.


1	CHEM 1000 Standard Periodic Table							18									
1.0079																	4.0026
H	2											13	14	15	16	17	He 2
1 6.941	9.0122											10.811	12.011	14.0067	15,9994	18.9984	20.1797
6.941 Li	9.0122 Be											10.811 B	C	14.0067 N	O	18.9984 F	20.1797 Ne
3	л											5 5	6 6	7	8	9 9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg											Al	Si	P	S2.000	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158,925	162.50	164.930	167.26	168.934	173.04	174.967	1
				140.908 Pr		. ,		131.965 Eu					Er		1/3.04 Yb		
		La 57	Ce 58	59 59	Nd 60	Pm 61	Sm 62	63	Gd 64	Tb 65	Dy 66	Ho 67	68 68	Tm 69	X D 70	Lu 71	
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	1
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	

BKCIEsFmMdNoLr979899100101102103Developed by Prof. R. T. Boeré (updated 2014)

Table of atomic orbital energies. All energies are in Ry.

	1s	2s	2р
Н	-1.00		
Не	-1.81		
Li	-4.77	-0.40	
Ве	-8.9	-0.69	
В	-14.5	-1.03	-0.42
С	-21.6	-1.43	-0.79
Ν	-30.0	-1.88	-0.95
0	-39.9	-2.38	-1.17
F	-51.2	-2.95	-1.37
Ne	-64.0	-3.56	-1.59
		3s	3р
S		-1.54	-0.86
4 11	• •	TO OL	D1 · 1

All energies are from J.C. Slater, *Physical Review* (1955) **98**, 1039-1045.

Region	Frequency range, (cm ⁻¹)	Bond types	Functional groups
1	3500 - 3200	О—Н N—Н	Alcohol, phenol Amine, amide
2	2300 - 2100	C≡C C≡N	Alkyne Nitrile
3	1800 – 1650	C=0	Aldehyde Amide Anhydride (2 bands) Carboxylic acid Acid chloride Ester
4	1650 – 1500	C=C C=C C=N N=O	Alkene Arene Imine Nitro compound

© Copyright 2006, University Science Books