NAME:	Section: Student Number:
Spring 2015	Chemistry 2000 Midterm #1A/ 55 marks
INSTRUCTIONS:	 Please read over the test carefully before beginning. You should have 5 pages of questions, a blank "overflow" page and a periodic table page. If your work is not legible, it will be given a mark of zero. Marks will be deducted for incorrect information added to an otherwise correct answer. Calculators are not permitted. You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Tuesday, February 10th, 2015. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/55 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: ____

Course: CHEM 2000 (General Chemistry II) Semester: Spring 2015 The University of Lethbridge Date:

Question Breakdown					
Q1	/ 6				
Q2	/ 4				
Q3	/ 15				
Q4	/ 14				
Q5	/ 9				
Q6	/ 3				
Q7	/ 4				

Total	/ 55
-------	------

- 1. Fill in each blank with the word or short phrase that best completes the sentence. **[6 marks]**
- (a) An exact solution to the Schrödinger wave equation can be derived for H_2^+ by "freezing" the separation of the two H nuclei, an approach which is known as the <u>Born-Oppenheimer</u> approximation.
- (b) The parameter defined in order to correlate the degree of bonding in MO theory with the number of bonds counted from a Lewis diagram is called the _bond order_.
- (c) Electron density in a molecule is expected to be *highest* in what location? _near the nuclei (just as in atoms)_.
- (d) The frontier molecular orbital (FMO) that is associated with a molecule's ability to act as a *donor* (i.e. as a Lewis base) is known by the following acronym: <u>HOMO</u>.
- (e) In *linear* and *planar* molecules, the _sigma-pi ($\underline{or} \sigma \pi$)_ separation can be used to simplify the treatment of bonding in MO theory.
- (f) In the MO description of bonding in the molecule hydrogen fluoride (HF), the $2p_x$ and $2p_y$ orbitals of fluorine have 100% _nonbonding_ character.
- 2. Draw <u>and</u> label the correct *shape* of the LCAO-MO for the indicated interaction. Include correct shading. [4 marks]
- (a) Destructive overlap.

(b) Constructive polarized overlap.

3. Construct an **atomic orbital – molecular orbital** interaction diagram for difluorine (F₂).

[15 marks]

- (a) Write the atomic electron configuration for a neutral atom of F and identify the valence electrons. $1s^2 \frac{2s^2 2p^5}{2s^2 2p^5}$ valence electrons are underlined
- (b) How many valence electrons does *the difluorine molecule* (F₂) possess? 14
- (c) Which valence AOs of F have σ symmetry? 2s and 2p_z
- (d) Which valence AOs of F have π symmetry? $2p_x$ and $2p_y$
- (e) Show energy levels at left as indicated and sketch the resultant LCAO-MOs that are correct in shape and in phase (shading) at right. Be sure to label all the MOs. Make use of the provided energy scale and show both the atomic and molecular energy levels in your diagram. Where possible assign the *dominant bonding character of each MO* using the usual label markers.

Populate your MO diagram with the correct no. of electrons!

(f) Determine the *bond order* in F₂. Show your work clearly. bond order = $\frac{1}{2}$ (# bonding electrons – # antibonding electrons) = $\frac{1}{2}$ (8 – 6) = 1

(g) Explain clearly, with reference to the MO diagram, why the molecular ion F_2^{2-} cannot exist. What alternative form of this anion does exist and why?

To make F_2^{2-} from F_2 , two electrons must be added. They will be added to the LUMO $(4\sigma^*)$ – which is an antibonding orbital. Adding two antibonding electrons reduces the bond order to 0 and therefore there is no longer a bond between the two fluorine atoms. Instead, two free F^- anions are formed, each obeying the octet rule.

Student Number:

(a) ... Complete the AO-MO interaction diagram for CS...

(b) Write the valence molecular electron configuration of CS in the standard format for diatomics: $(1\sigma)^2 (2\sigma_{nb})^2 (1\pi)^4 (3\sigma_{nb})^2$

- Consider the UV-PES diagram for CS (c) shown at right. Assign the ionization processes to the MO diagram by labelling the peaks with the corresponding MO labels from your diagram above.
- i. Which peak corresponds to ionization from the highest occupied molecular orbital ***HOMO is $3\sigma_{nb}$ *** (HOMO)?

peak at 11.4 eV

ii. Which peak(s) correspond to electrons ionized from bonding MOs? Explain.

peak at 13.3 eV (corresponds to 1π)

This peak shows extensive fine splitting due to vibrational energy levels, indicating a strong change in bond order after the molecule is ionized by exciting an electron out of this MO.

iii. Which peak(s) correspond to electrons ionized from non-bonding MOs? Explain.

peaks at 11.4 eV and 18 eV (correspond to $2\sigma_{nb}$ and $3\sigma_{nb}$ respectively)

These peaks are sharp single peaks, indicating little change in bond order after the molecule is ionized by exciting an electron out of one of these MOs.

If you hadn't initially designated 2σ and 3σ as nonbonding, this part of the question provided evidence that they were, and you should have gone back to change that on your MO diagram.

5.

[9 marks]

(a) Use the "Frost circle" approach to generate an approximate valence π -MO energy-level diagram (energy levels only!) for cyclic hydrocarbon species of the form $[C_5H_5]^x$. Be sure to label each molecular energy level on your diagram with the correct label. Indicate the *dominant* bonding character with the usual symbols. Pay attention to multiplicity of levels!

(b) Sketch approximate orbital shapes for each of the π -MOs in your MO diagram. *Fill in as many of the rings as required to complete this project*. Clearly label each MO you decide to draw. Show the resultant \perp nodes.

It is sometimes easier just to draw the atomic p_z orbitals with the correct relative shading (phase).

(c) Which value of "x" (i.e. which charge of $[C_5H_5]^x$) will provide the *optimal* π -bonding in this type of hydrocarbon? Show your work or explain your reasoning.

x = -1

To fill all three π bonding MOs requires 6 π electrons. Each carbon atom contributes one π electron, so you need one extra π electron.

An alternative way to look at this is that the sigma skeleton requires 20 electrons. To fill all three π bonding MOs requires 6 π electons, meaning that the species would have a total of 26 valence electrons. Neutral C₅H₅ has 25 valence electrons so C₅H₅⁻ has 26 valence electrons.

Section: ____ Student Number:_

6. Use Valence Bond theory to consider the bonding in acetonitrile (CH₃CN).

[3 marks]

(a) Draw the best Lewis structure for CH₃CN.
 The three larger atoms are connected C-C-N with three H attached to the terminal C.

(b) What is the hybridization of each of the following atoms in CH_3CN :

C (of CH₃) = $_sp^3_$ C (of CN) = $_sp_$

- 7. Please answer (a) and (b) side by side so that the relative scales are obvious. [4 marks]
- (a) Draw the band structure of potassium (b) Draw the band structure of silicon.

These diagrams show the valence band and conduction band for each element. Core bands are not shown.

(c) One of these two elements is an insulator. Which one? Explain your choice.

Silicon

Potassium is definitely *not* an insulator! It is an excellent conductor as evidenced by the valence band and conduction band being the same band (allowing electrons to move readily from the valence band to conduction band).

Therefore, silicon must be the insulator. It has an energy gap between the valence band and conduction band that must be large enough $(>10k_B \cdot T)$ to make it an insulator.

1	CHEM 1000 Standard Periodic Table									18							
1.0079]																4.0026
Η	_																He
1	2											13	14	15	16	17	2
6.941	9.0122]										10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	2	4	_		-	0	0	10	11	10	Al	Si	Р	S	Cl	Ar
11	12	3	4	5	0	1	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		100.001															1
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		AC	Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	ES	Fm	Md	INO 102	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	

Developed by Prof. R. T. Boeré (updated 2014)

Table of atomic orbital energies. All energies are in Ry.

1s	2s	2р
-1.00		
-1.81		
-4.77	-0.40	
-8.9	-0.69	
-14.5	-1.03	-0.42
-21.6	-1.43	-0.79
-30.0	-1.88	-0.95
-39.9	-2.38	-1.17
-51.2	-2.95	-1.37
-64.0	-3.56	-1.59
	3s	3р
	-1.54	-0.86
	1s -1.00 -1.81 -4.77 -8.9 -14.5 -21.6 -30.0 -39.9 -51.2 -64.0	1s 2s -1.00 - -1.81 - -4.77 -0.40 -8.9 -0.69 -14.5 -1.03 -21.6 -1.43 -30.0 -1.88 -39.9 -2.38 -51.2 -2.95 -64.0 -3.56 3s -1.54

All energies are from J.C. Slater, *Physical Review* (1955) **98**, 1039-1045.

Region	Frequency range, (cm $^{-1}$)	Bond types	Functional groups
1	3500 – 3200	0—Н N—Н	Alcohol, phenol Amine, amide
2	2300 - 2100	C≡C C≡N	Alkyne Nitrile
3	1800 – 1650	C=0	Aldehyde Amide Anhydride (2 bands) Carboxylic acid Acid chloride Ester
4	1650 – 1500	C=C C=C C=N N=O	Alkene Arene Imine Nitro compound

© Copyright 2006, University Science Books