NAME:	Section: Student Number:
Spring 2020	Chemistry 2000 Midterm #1A/65 marks
INSTRUCTIONS:	 Please read over the test carefully before beginning. You should have 8 pages of questions, a blank "overflow" page and a periodic table page. If your work is not legible, it will be given a mark of zero. Marks will be deducted for incorrect information added to an otherwise correct answer. Calculators are not permitted. You have 90 minutes to complete this test.
Time on Tuesday, F academic misconduct a mark of 0/65 on thi	eement: (or in any other way divulge) the contents of this exam until after 8:30 pm Mountain February 11 th , 2020. I understand that breaking this agreement would constitute t, a serious offense with serious consequences. The minimum punishment would be is exam and removal of the "overwrite midterm mark with final exam mark" option course; the maximum punishment would include expulsion from this university.
_	

Question Breakdown

Q1	/ 16
Q2	/ 7
Q3	/ 20
Q4	/ 16
Q5	/ 6

Total	/ 65

NAM	E: Sec	etion:	Student Number:	
1.				[16 marks]
(a)	Develop the valence molecular orbital en	ergy level o	diagram for B_2 .	[7 marks]
	Your diagram must include: labeled molecular orbital ener identification of each molecul electrons in the appropriate m 	lar orbital as	s bonding, nonbonding or a	
(b)	Calculate the bond order for B_2			[1 mark]
(c)	Identify and sketch the HOMO and LUM HOMO:	10 of B_2 .		[4 marks]

NAME: Section:_	Student Number:
-----------------	-----------------

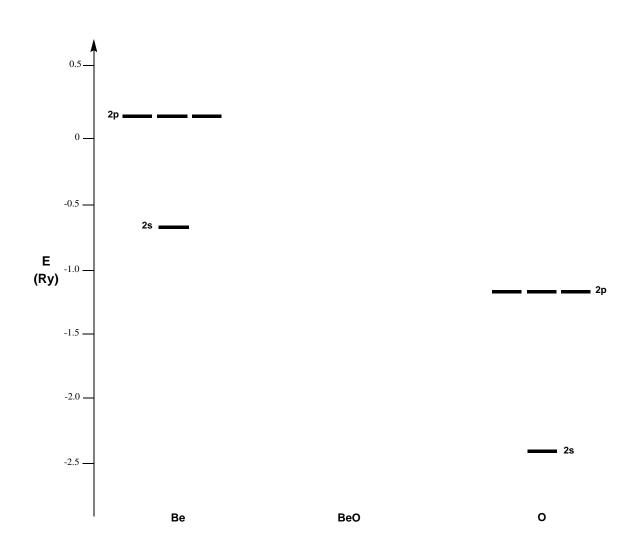
- 1. ...continued
- (d) Sketch the UV photoelectron spectrum of B_2 . Assume that the UV photon used has enough energy to remove electrons from any of the valence orbitals. While you won't be able to put numbers on the horizontal axis, do indicate what quantity is plotted along this axis and the direction in which this quantity increases. The vibrational "frequency" of the neutral B_2 molecule is 1051.3 cm⁻¹. Indicate how the relevant feature(s) of the spectrum relate to this frequency. [4 marks]

NAM	ME: Se	ection:	Student Number:	
2.	Consider a piece of sodium. Use the syr	nbol <i>N</i> to repre	sent the number of sodi	um atoms.[7 marks]
(a)	Draw a band diagram for sodium. India your diagram.	cate the atomic	orbital(s) that contribu	ited to the band(s) in [3 marks]
(b)	Indicate how many states exist in each	oand on your d	iagram.	[1 mark]
(c)	Indicate how many electrons occupy ea	ch band on you	ır diagram.	[1 mark]
(d)	Is sodium a conductor, semiconductor band diagram.	or insulator?	Justify your answer wi	th reference to your [2 marks]

NAME:	Section:	Student Number:

3. Consider beryllium oxide (*BeO*) according to molecular orbital theory.

[20 marks]


(a) Draw the Lewis diagram for *BeO*.

[1 mark]

(b) Complete the valence molecular orbital energy level diagram below by:

[9 marks]

- drawing and labeling the molecular orbital energy levels (you don't need to draw pictures of the MOs themselves)
- identifying each molecular orbital as bonding, nonbonding or antibonding
- populating the diagram with the appropriate number of electrons
- labeling the HOMO and LUMO

(c) Write the valence orbital occupancy (electron configuration) for *BeO*.

[1 mark]

NAMI	E:	Section:	Student Number:	
3. (d)	continued Draw each of the sigma-symmetric	valence molecular	r orbitals of <i>BeO</i> .	[4 marks]
(e)	When <i>BeO</i> acts as a Lewis acid, do reference to the relevant molecular of		act at <i>Be</i> or at <i>O</i> ? Justify your	answer with [3 marks]
(f)	Does the bond order implied by yo diagram? Explain briefly.	our MO diagram a	gree with that predicted from	your Lewis [2 marks]

NAM	ME: Section:_	: Student Number:
4. (a)	Draw a Lewis diagram (with resonance structu Include any non-zero formal charges on the ap	
(b)	Use VSEPR theory to predict the shape of NO_2	O_2^- . [1 mark]
(c)	Develop the π MO energy level diagram of NO Your diagram must include: • labeled molecular orbital energy levels identification of each molecular orbital electrons in the appropriate molecular orbital energy levels identification of each molecular orbital energy levels identification energy level	evels rbital as bonding, nonbonding or antibonding
(d)	Does the π bond order implied by your π MO diagram(s)? Explain briefly.	O diagram agree with that predicted from your Lewis [2 marks]

NAME:	Section:	Student Number:

- 4. ...continued
- (e) Draw the π MOs. Show both a top view and a side view for each π MO. Label each picture so that it is clear which π MO it shows. [6 marks]

NAME:	Section:	Student Number:

5. The following is a graphic of methyl anthranilate, a compound that occurs naturally in grapes and gives them some of the characteristic grape aroma and flavor. It is the main flavoring agent in grape Kool-Aid. [6 marks]

The following questions are to be answered using valence-bond theory.

(a) What is the hybridization of the nitrogen atom?

[1 mark]

(b) What is the hybridization of the carbon atoms in the ring?

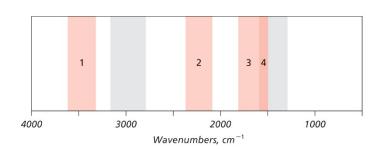
[1 mark]

(c) How would valence-bond theory describe the bonding in the C=O group of this molecule? Make sure to provide the description of both the sigma and pi bonds. [4 marks]

NAME:	Section:	Student Number:
Overflow Page		

If you use this page for any answers, please clearly indicate which question is being answered and make sure you note on the page for the question itself that the answer continues here.

1	Chem 1000 Standard Periodic Table											18					
1.0079																	4.0026
H																	He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	C	N	O	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	•		_		_	•	•	10	4.4	10	Al	Si	P	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118


138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré (updated 2016)

Table of atomic orbital energies. All energies are in Ry.

	1s	2s	2p
Н	-1.00		
He	-1.81		
Li	-4.77	-0.40	
Be	-8.9	-0.69	
В	-14.5	-1.03	-0.42
C	-21.6	-1.43	-0.79
N	-30.0	-1.88	-0.95
0	-39.9	-2.38	-1.17
F	-51.2	-2.95	-1.37
Ne	-64.0	-3.56	-1.59

All energies are from J.C. Slater, *Physical Review* (1955) **98**, 1039-1045.

Region	Frequency range, (cm ⁻¹)	Bond types	Functional groups
1	3500 – 3200	O—H N—H	Alcohol, phenol Amine, amide
2	2300 – 2100	C≡C C≡N	Alkyne Nitrile
3	1800 – 1650	C=0	Aldehyde Amide Anhydride (2 bands) Carboxylic acid Acid chloride Ester
4	1650 – 1500	C=C C=C C=N N=O	Alkene Arene Imine Nitro compound