\qquad
\qquad
\qquad

INSTRUCTIONS:

1) Please read over the test carefully before beginning. You should have 5 pages of questions, a blank "overflow" page and two pages of data sheets with periodic table.
2) If your work is not legible, it will be given a mark of zero.
3) Marks will be deducted for incorrect information added to an otherwise correct answer.
4) Marks will be deducted for improper use of significant figures and for missing or incorrect units.
5) Show your work for all calculations. Numerical answers without supporting calculations will not be given full credit.
6) You may use a calculator but only for the purposes of calculation. No textcapable calculators are allowed.
7) You have 90 minutes to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00 pm Mountain Time on Thursday, March $23^{\text {rd }}$, 2017. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 50$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad Date: \qquad
Course: CHEM 2000 (General Chemistry II)
Semester: Spring 2017
The University of Lethbridge

Question Breakdown

Q1	$/ 5$
Q2	$/ 11$
Q3	$/ 9$
Q4	$/ 5$
Q5	$/ 8$
Q6	$/ 12$

Total	$/ 50$

\qquad
\qquad
\qquad

1. Consider the unlabeled phase diagram below.

(a) On the diagram, label:

- the critical point
- the triple point
- regions corresponding to the four states of matter discussed in class
(b) A sample of this substance is initially at 200 K and 10 bar. The temperature is raised to 300 K while the pressure is maintained at 10 bar. What phase change(s) will occur?
[1 mark]
(c) A sample of this substance is initially at 200 K and 1 bar. The pressure is raised to 10 bar while the temperature is maintained at 200 K . What phase change(s) will occur?
[1 mark]
\qquad
\qquad
\qquad

2. Two chlorine atoms react to form a chlorine molecule under standard conditions:

$$
2 C l_{(g)} \rightarrow C l_{2(g)}
$$

(a) What information does the phrase "standard conditions" give you about the conditions under which this reaction is being studied?
(b) Is $\Delta_{\mathrm{r}} \mathrm{G}^{\circ}$ positive, negative or zero for this reaction? Briefly, justify your answer.
[2 marks]
(c) Is $\Delta_{r} S^{\circ}$ positive, negative or zero for this reaction? Briefly, justify your answer.
[2 marks]
(d) Is $\Delta_{r} H^{\circ}$ positive, negative or zero for this reaction? Briefly, justify your answer. [2 marks]
(e) Will there be any temperature at which this reaction is not favoured in the forward direction? If 'yes', will it be high or low temperatures (and why)? If 'no', why not?
\qquad
\qquad
\qquad
3. Fill in each blank with the word or short phrase that best completes the sentence.
(a) The term for "heat at constant pressure" is \qquad .
(b) The only time that $\mathrm{Q}=\mathrm{K}$ is when \qquad .
(c) If $\mathrm{Q}>\mathrm{K}$, we can expect that the reaction will proceed in the \qquad direction.
(d) The entropy of \qquad increases in every thermodynamically allowed process.
(e) The \qquad half reaction occurs at the cathode of an electrochemical cell.
(f) The activity of a pure solid is \qquad .
(g) The activity of $C l_{(a q)}^{-}$in an ideal 0.1 M solution of $\mathrm{MgCl}_{2(a q)}$ is \qquad .
(h) Henry's law states that the concentration of dissolved gas in a solution is directly proportional to
(i) The third law of thermodynamics states that \qquad .
4. In the qualitative analysis lab, you used aqua regia, a mixture of concentrated $\mathrm{HNO}_{3(\mathrm{aq})}$ and $H C l_{(a q)}$ to isolate for certain Group II/III cations. The use of aqua regia was originally developed by alchemists to "dissolve" gold but, in reality, this is just a redox reaction under acidic conditions. The incomplete and unbalanced equation is shown below:

$$
\mathrm{Au}_{(\mathrm{s})}+\mathrm{NO}_{3(a q)}^{-}+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{AuCl}_{4(a q)}^{-}+\mathrm{NO}_{2_{(g)}}
$$

(a) Balance the equation using either the half reaction method or the oxidation method. [3 marks] Show your work.
(b) Identify the oxidizing agent.
(c) Identify the reducing agent.

NAME: \qquad Section: \qquad Student Number: \qquad
5. Consider the following electrochemical cell, run at $25.00^{\circ} \mathrm{C}$:

$$
C u_{(s)}\left|C u_{(a q)}^{2+}(0.0100 M) \| A g_{(a q)}^{+}(0.500 M)\right| A g_{(s)}
$$

(a) Write a balanced chemical equation for the reaction that proceeds in this electrochemical cell.
(b) Calculate the cell potential for this electrochemical cell.
\qquad
\qquad
\qquad
6. The K_{a} value for $H F_{(a q)}$ at $25.00^{\circ} \mathrm{C}$ is 6.8×10^{-4}.

$$
H F_{(a q)} \rightleftharpoons H_{(a q)}^{+}+F_{(a q)}^{-}
$$

(a) Calculate $\Delta \mathrm{G}^{\circ}$ for the reaction above.
[12 marks]
$K_{a}=6.8 \times 10^{-4}$
[2 marks]
(b) Calculate $\Delta_{\mathrm{f}} G^{\circ}$ for $H F_{(a q)}$.
[3 marks]
(c) Calculate the K_{a} value for $H F_{(a q)}$ at $50.00^{\circ} \mathrm{C}$.
(d) Is $H F_{(a q)}$ a stronger acid at $50.00^{\circ} \mathrm{C}$ or at $25.00^{\circ} \mathrm{C}$? How do you know? In other words, at which temperature is the reaction more product-favoured?

NAME: \qquad
\qquad Student Number:

Overflow Page

If you use this page for any answers, please clearly indicate which question is being answered and make sure you note on the page for the question itself that the answer continues here

Some Useful Constants and Formulae

Fundamental Constants and Conversion Factors

Atomic mass unit (u)	$1.660539 \times 10^{-27} \mathrm{~kg}$	Kelvin temperature scale	$0 \mathrm{~K}=-273.15{ }^{\circ} \mathrm{C}$
Avogadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)$	$6.022141 \times 10^{23} \mathrm{~mol}^{-1}$	$\mathrm{~K}_{\mathrm{w}}\left(\right.$ at $\left.25{ }^{\circ} \mathrm{C}\right)$	10^{-14}
Boltzmann constant $\left(\mathrm{k}_{\mathrm{B}}\right)$	$1.380649 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$	Planck's constant (h)	$6.626070 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~Hz}^{-1}$
Charge of electron	$-1.602176 \times 10^{-19} \mathrm{C}$	Speed of light in vacuum (c)	$2.997925 \mathrm{x} 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Faraday’s constant (F)	$96485 \mathrm{C} \cdot \mathrm{mol}^{-1}$	Volume conversion	$1000 \mathrm{~L}=1 \mathrm{~m}^{3}$
Ideal gas constant (R)	$8.314462 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$	Pressure conversions	$1 \mathrm{bar}=100 \mathrm{kPa}$
	$8.314462 \mathrm{~m}^{3} \cdot \mathrm{~Pa} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$		$1 \mathrm{~atm}=1.01325 \mathrm{bar}$

Formulae

$\bar{K}=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} R T$ $v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 R T}{M}}$ $P V=n R T$
$S=k_{B} \ln \Omega \quad \Delta S=\frac{q_{r e v}}{T} \quad \Delta_{r} G=\Delta_{r} H-T \Delta_{r} S \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Delta_{\mathrm{r}} \mathrm{G}=\Delta_{\mathrm{r}} \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-\mathrm{R} T \ln K$
$\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta_{r} H^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
$P_{A}=X_{A} P_{A}^{\bullet}$
$[A]=k_{H} P_{A}$
$x=\frac{n}{\sum n}$
$\Delta_{\mathrm{r}} \mathrm{G}=-v_{\mathrm{e}} \mathrm{FE}$
$E=E^{\circ}-\frac{R T}{v_{e} F} \ln Q$
$p H=-\log a_{H^{+}} \quad p K_{a}=-\log K_{a}$
$p K_{b}=-\log K_{b} \quad K_{w}=K_{a} \cdot K_{b}$
$p H=p K_{a}+\log \left(\frac{a_{A^{-}}}{a_{H A}}\right)$
$\Delta H_{r x n}^{0}=\sum\left(\Delta H_{f}^{0}(\right.$ products $)-\sum\left(\Delta H_{f}^{0}\right.$ (reactants $)$
$\Delta S_{r \times n}^{0}=\sum\left(S^{0}(\right.$ products $)-\sum\left(S^{0}(\right.$ reactants $)$
$\Delta G_{r \times n}^{0}=\sum\left(\Delta G_{f}^{0}(\right.$ products $)-\sum\left(\Delta G_{f}^{0}\right.$ (reactants $)$

Activities

Solid	$a=1$
Pure liquid	$a=1$
Ideal Solvent	$a=X$
Ideal Solute	$a=\frac{c}{c^{\circ}}$
Ideal Gas	$a=\frac{P}{P^{\circ}}$

Developed by Prof. R. T. Boeré (updated 2016)

Some Useful Thermodynamic Properties

Substance	$\Delta_{f} H^{\circ}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	$\Delta_{f} G^{\circ}\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	$S^{\circ}\left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$
$F_{(a q)}^{-}$	-332.63	-278.79	-13.8
$H F_{(a q)}$	-320.08	see question 6	88.7

Half Reaction	$E^{\circ}(V)$
$A g_{(a q)}^{+}+e^{-} \rightarrow A g_{(s)}$	+0.80
$C u_{(a q)}^{2+}+2 e^{-} \rightarrow C u_{(s)}$	+0.34
$C u_{(a q)}^{2+}+e^{-} \rightarrow C u_{(a q)}^{+}$	+0.15
$2 H_{(a q)}^{+}+2 e^{-} \rightarrow H_{2(g)}$	0

