CHEMISTRY 2500A: Organic Chemistry I FINAL EXAM

Saturday, December 8th, 2018

Instructions:

- This exam consists of 16 questions.
- The exam is worth a total of 92 marks. Most of these marks are for explanation/showing your work rather than for reaching the correct answer. Explain all of your answers fully using diagrams where appropriate (a picture really is worth a thousand words!).
- Marks will be deducted for poorly drawn structures.
- No calculators allowed. No other electronic devices can be present with you during the exam unless authorized by the instructor.
- You may use a molecular model kit.
- There is a 3-hour time limit.
- If your work is not legible, it will be given a mark of zero.
- Read the questions carefully. Good luck.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked. I understand that, if I were to break this agreement, I would be choosing to commit academic misconduct, a serious offense which will be punished. The minimum punishment would be a mark of 0 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: _____Course: CHEM 2500 (Organic Chemistry I)

Semester: Fall 2018

The University of Lethbridge

Question Breakdown

Q1	/ 4
Q2	/ 4
Q3	/6
Q4	/ 4
Q5	/6
Q6	/ 10
Q 7	/6
Q8	/ 5

Q9	/6
Q10	/ 5
Q11	/ 4
Q12	/8
Q13	/ 10
Q14	/8
Q15	/ 5
Q16	/ 1

Total	/ 92
-------	------

I SEE YOU, HOBBES!
MAN, WHAT A LOUSY
SHOT! TIGERS CAN'T
THROW WORTH A...

1. While working in the lab, Al Kane attempts to make four different Grignard reagents. For each reaction, determine if Al was successful in making the Grignard reagents. If the reaction worked, draw the structure of the Grignard reagent. If the reaction did not work, explain why.

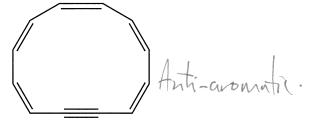
[4 marks]

(a)

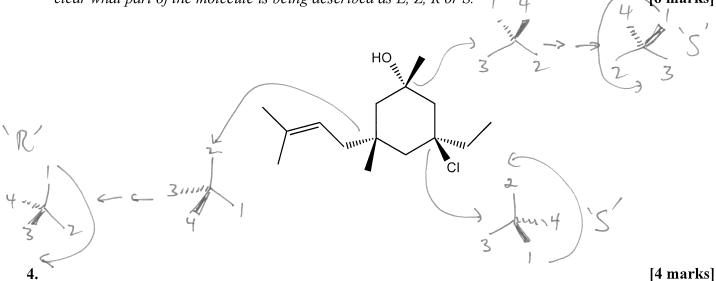
$$\longrightarrow$$
 Br + Mg \longrightarrow \longrightarrow \bigcirc Mg \bigcirc BV

(b)

$$\longrightarrow$$
 Br + Mg \longrightarrow Et₂O \longrightarrow \longrightarrow


2. Predict whether the following molecules, as drawn, are aromatic, anti-aromatic, or non-aromatic. Hint: start by adding all missing lone pairs. [4 marks]

(a)


(b)

(c)

(d)

3. For the following molecule, where appropriate, assign the stereochemical configuration(s) as E, Z, R or S. For full marks, you must show the priority numbers you used to assign each configuration and it must be clear what part of the molecule is being described as E, E, E, E or E.

(a) The following molecule has been named incorrectly, however, the structure of the molecule can still be deduced. Draw the structure of the molecule using proper line-bond format.

4-oxo-5-chloro-3-propylhept-5-ene

(b) Based on the structure above, give the correct name of this molecule according to IUPAC rules.

5. There are only 4 constitutional isomers with molecular formula $C_4H_9NO_2$ that contain a nitro group (-NO₂). Three of these isomers have similar pK_a values, while the fourth isomer has a much higher pK_a value. Draw all four isomers and identify which one has the higher pK_a . Explain your choice. [6 marks]

6. Using the appropriate letter or letters, indicate the relationship(s) between the following pairs of molecules. If there is more than one relationship, provide all the letters that apply. *No explanation is necessary.*

[10 marks]

A = stereoisomers

B = constitutional isomers

C = conformers

D = diastereomers

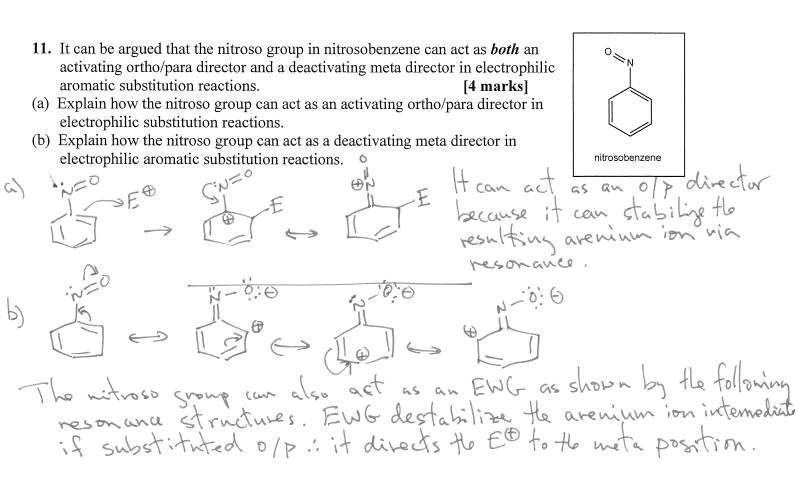
E = enantiomers

F = identical molecules

G =none of the above

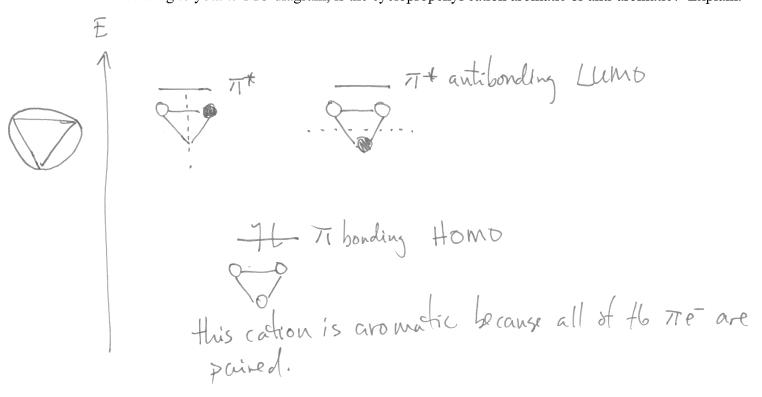
	relationship(s)
and H_3C H	F
and O Minner	B
CI H and H	A,E
F CH ₂ Br BrH ₂ C H F and H H Br	F
CI min. OH and HO CI	F

7. In the addition reaction of HBr to the following molecule there are, in principle, several different possible 1,2- and 1,4- addition products. Only one 1,4-addition product is actually observed. Draw the structures of the 6 different possible 1,4-addition products and identify the one that is observed. Briefly explain why this is the only observed 1,4-addition product. Note that part of your answer must contain a mechanism of the formation of the observed 1,4-addition product. [6 marks]


8. Using curved arrows, draw plausible mechanisms that account for the formation of both of the products for the following reaction. [5 marks]

- 9. For the following question, your structures must be drawn in line-bond format, be valid Lewis structures, and contain NO charges. [6 marks]
- (a) Draw an *anti-aromatic* molecule containing a 6-membered ring containing 3 nitrogen atoms.

(b) Draw an *aromatic* molecule containing a 5-membered ring containing 3 nitrogen atoms.


(c) Draw a *non-aromatic* molecule containing a 5-membered ring containing 3 nitrogen atoms.

10. We saw that benzene can be sulfonated to benzenesulfonic acid with *concentrated* sulfuric acid (H₂SO₄). We also saw that this reaction is reversible in *aqueous* sulfuric acid. Draw the mechanism for the reverse reaction. Be sure your mechanism accounts for the formation of all 3 products; benzene, sulfuric acid, and the hydronium ion. [5 marks]

- 12. Sketch the π -MO energy level diagram for the cyclopropenyl cation. On your diagram: [8 marks]
 - Determine the relative energy levels of the orbitals
 - include the appropriate number of π -electrons
 - label each energy level as bonding, non-bonding, or antibonding.
 - label the HOMO and LUMO
 - Sketch all π -MOs for this molecule
 - According to your π -MO diagram, is the cyclopropenyl cation aromatic or anti-aromatic? Explain.

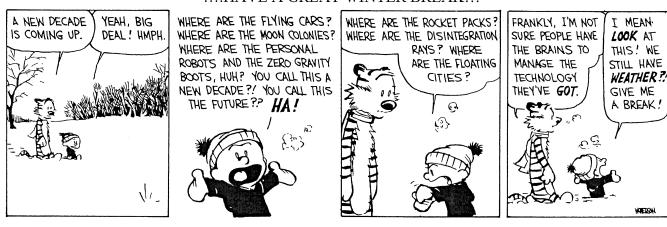
cyclopropenyl

13. For the following reactions, fill in the missing starting materials, products, or reagents. Marks are given for correct connectivity and, where appropriate, correct stereochemistry and regiochemistry. If more than one organic product is possible, draw only the major product. [10 marks]

(a)
$$AICl_3$$
 Br_2 $FeBr_3$ Br_2 $FeBr_3$ Br_2 Br_2

e)

HCI (slow addition)


14. Starting from benzene, propose a workable synthesize for 2 of following molecules. You may use any other organic or inorganic reagents or solvents as needed. [8 marks]

Br

$$A1Cl_3$$
 $A1Cl_3$
 $A1Cl_3$

15. Use curved arrows to draw a plausible mechanism for the following process, called iodolactonization.

....HAVE A GREAT WINTER BREAK!!!

Extra space for: rough work, grocery list, poems, jokes, meaning of life, non-Euclidean proofs, cartoons, etc.

pKa values of molecules and ions commonly encountered in organic chemistry.

Acid	Conjugate base	рK _a	Acid	Conjugate base	рKа	
HClO ₄	CIO ₄ -	– 10	HCN	CN ⁻	9.2	
Н	i I	-9	NH ₄ +	NH_3	9.2	
+OH	O _u		ArOH	ArO ⁻	10	
R-C-H	R—C—H	<u> </u>	R—CH ₂ NO ₂	R—ĒH—NO ₂	10	
HBr	Br	– 9	RNH ₃ ⁺	RNH ₂	11	
H ₂ SO ₄	HSO₄ ⁻	— 7	RSH	RS	11	
HCI	CI_	-7	0 0	0 0		
⁺ ОН 	0	- 7	CH ₃ OR	CH ₃ OR	11	
R—C—R	R—C—R		H ₂ O ₂	HOO-	11.6	
Ar\$O₃H	ArSO ₃	-6.5	PhNHCOR	PhÑ—COR	13	
†ОН 	O I	-6	CH₃OH	CH₃O¯	15.2	
R—Ü—OR'	R—Ċ—OR′		H ₂ O	HO [−]	15.7	
H			RCH ₂ OH	RCH ₂ O¯	16	
R-0+R'	R-O-R'	- 3.5	R ₂ CH—OH	R₂CH—O¯	. 17	
Н			R ₃ C—OH	R_3C-O^-	17	
R-O ⁺ H	R—О—Н	— 2	0	Q .		
H ₃ O ⁺	H ₂ O	— 1.7	R—C—NH₂	R—Ü—NH ⁻	17	
HNO ₃	NO ₃ -	- 1.4	PhCH₂COR	PhCH—COR	17	
HSO ₄ -	SO ₄ ²	2	Q	O		
H₃PO₄	H ₂ PO ₄ ⁻	2.1	∥ R—C—CH₃	 R—C—CH₂¯	20	
HF	F	3.1	0	5 5.72		
номо	NO ₂	3.3	Í		24	
ArNH ₃ ⁺	ArNH ₂	4	RO—Ĉ—CH₃	RO—C—CH ₂		
HN ₃	N_3^-	4.6	R—CH ₂ CN	R—ĈH—CN	25	
RCOOH	RCOO-	5	H—C≡C—H	H—C≡C	25	
H ₂ CO ₃	HCO ₃	6.4	PhNH₂	PhNH ⁻	28	
H ₂ S	HS-	7	H ₂	H ⁻	35	
ArSH	Ars ⁻	7	NH ₃	NH ₂	38	
0 0	Q Q		Ph—CH₃	Ph—CH ₂ ⁻	40	
CH ₃ CH ₃	CH ₃ CH ₃	9	H		43	
			CH ₂ =CH ₂	CH₂=CH ⁻	44	
			CH ₄	CH ₃	48	

Abbreviations: Ar = aryl; Ph = phenyl; R = alkyl.

Some Useful Data

Principal Functional Group Priority List

Carboxylic acid

Sulfonic acid

Ester

Acid chloride

Amide

Nitrile

Aldehyde

Ketone

Alcohol

Thiol

Amine

1	CHEM 1000 Standard Periodic Table													18			
1.0079																	4.0026
H																	He
1	2	_										13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	C	N	0	F	Ne
3	4	[5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	۱ .		_		_			4.0			Al	Si	P	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102,906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Dt	Rg							
87	88		104	105	106	107	108	109	110	111]						
		120.006	140.115	1 10 000		(4.15)					г						,
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
												$D\epsilon$	evelone	ed by I	Prof. R	. T. Bo	oeré
													P				