

CHEMISTRY 2500: Organic Chemistry I

MIDTERM-1

~~Friday, October 10, 2019~~

Thursday.

Instructions:

- This exam paper consists of 12 questions.
- The exam is worth a total of 65 marks. Most of these marks are for explanation/showing your work rather than for reaching the correct answer. Explain all of your answers fully using diagrams where appropriate (a picture really is worth a thousand words!).
- Marks will be deducted for poorly drawn structures.
- No calculators allowed. No other electronic devices can be present with you during the exam unless authorized by the instructor.
- You may use a molecular model kit.
- There is a 2-hour time limit.
- If your work is not legible, it will be given a mark of zero.
- **Read the questions carefully.** Good luck.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked and returned. I understand that, if I were to break this agreement, I would be choosing to commit academic misconduct, a serious offense that will be punished. The minimum punishment would be a mark of 0 on this exam and removal of the “overwrite midterm mark with final exam mark” option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: _____

Date: _____

Course: CHEM 2500 (Organic Chemistry I)


Semester: Fall 2019

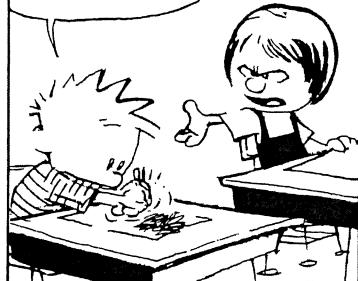
The University of Lethbridge

Question Breakdown

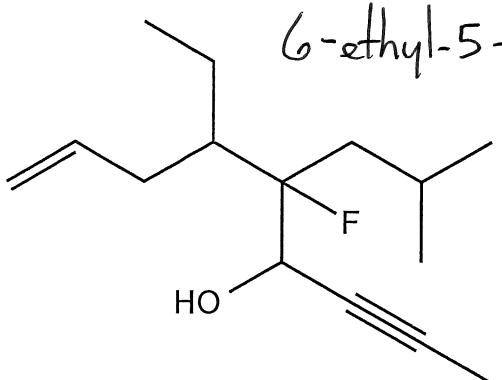
Q1	/2	Q7	/3
Q2	/4	Q8	/5
Q3	/4	Q9	/6
Q4	/10	Q10	/4
Q5	/6	Q11	/4
Q6	/5	Q12	/12

Total /65

OK, BUT DON'T BREAK IT, AND DON'T PEEL THE PAPER OFF, AND COLOR WITH ALL SIDES OF IT SO IT STAYS POINTY.


GEEZ, WHY DON'T YOU TAKE OUT AN INSURANCE POLICY ON IT?

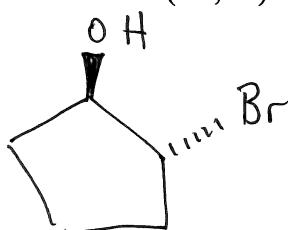
JUST DON'T RUIN MY CRAYON. WHAT ARE YOU DRAWING ANYWAY?


BLACK BEARS ATTACKING A BLACK FOREST CAMPGROUND AT MIDNIGHT.

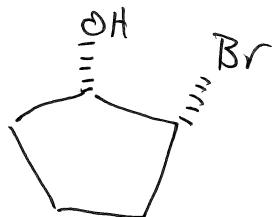
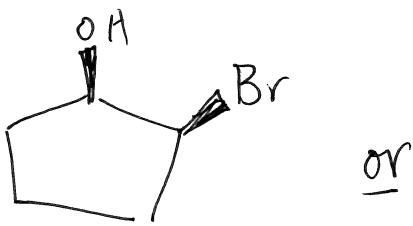
GIVE ME MY CRAYON BACK.

1. Name the following molecule according to IUPAC rules.

[2 marks]

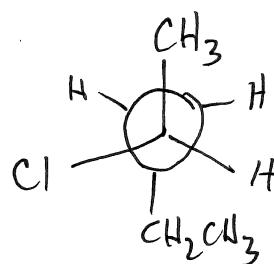
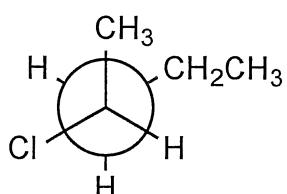


-ethyl-5-fluoro-5-isobutylnon-8-ene-2yn-4-ol

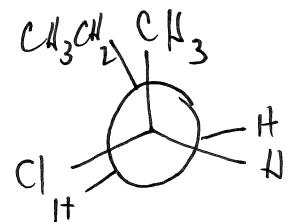


2.

(a) Using line structures, draw the structure of (1*R*,2*R*)-2-bromocyclopentanol

[4 marks]

(b) Using line structures, draw a **diastereomer** of (1*R*,2*R*)-2-bromocyclopentanol.



3. For the following Newman projection, draw both the highest energy and lowest energy conformers.

[4 marks]

lowest energy

highest energy

4. Using the appropriate letter or letters, indicate the relationship(s) between the following pairs of molecules.
 If there is more than one relationship, provide all the letters that apply. *No explanation is necessary.*

[10 marks]

A = stereoisomers

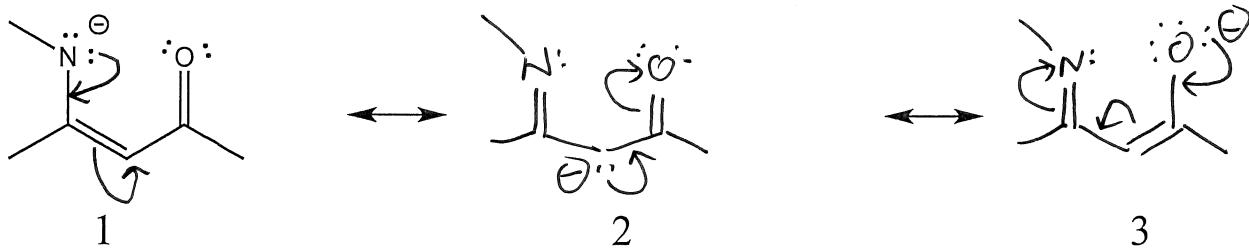
B = constitutional isomers

C = conformers

D = diastereomers

E = enantiomers

F = identical molecules

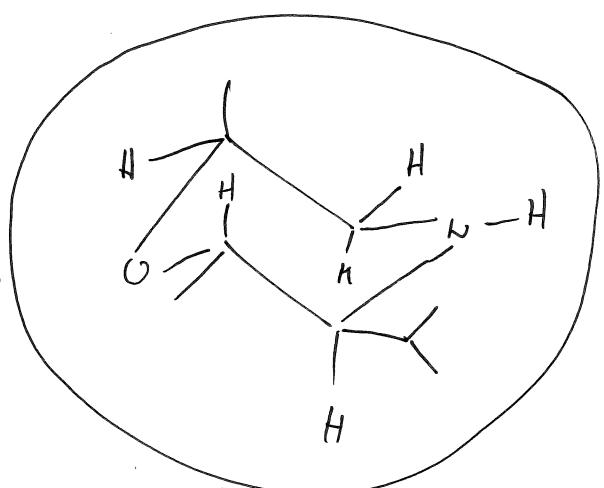
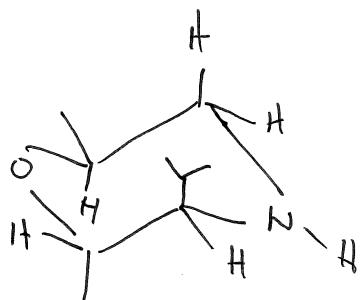
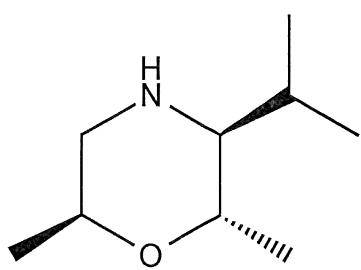

G = none of the above

		relationship(s)	
	and		<i>F or C</i>
	and		<i>A, E</i>
	and		<i>B</i>
	and		<i>F</i>
	and		<i>A, D</i>

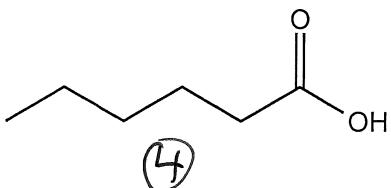
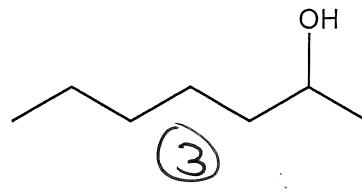
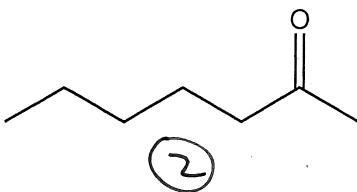
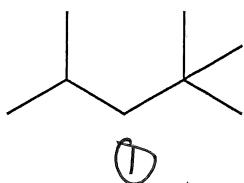
5.

[6 marks]

- (a) For the following molecule, there are 2 more significant resonance structures. Draw these 2 resonance structures and use curved arrows to show the electron movement necessary to convert structure 1 into 2, 2 into 3, **AND** 3 into 1. Add all lone pairs and formal charges where appropriate.

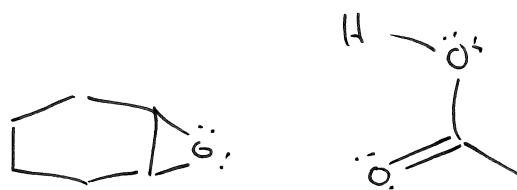
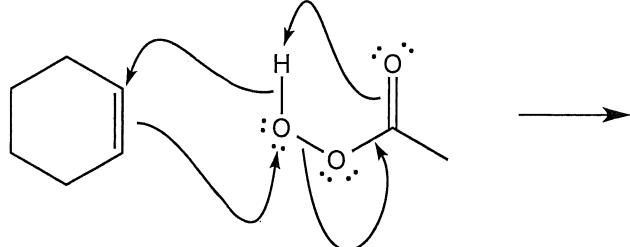




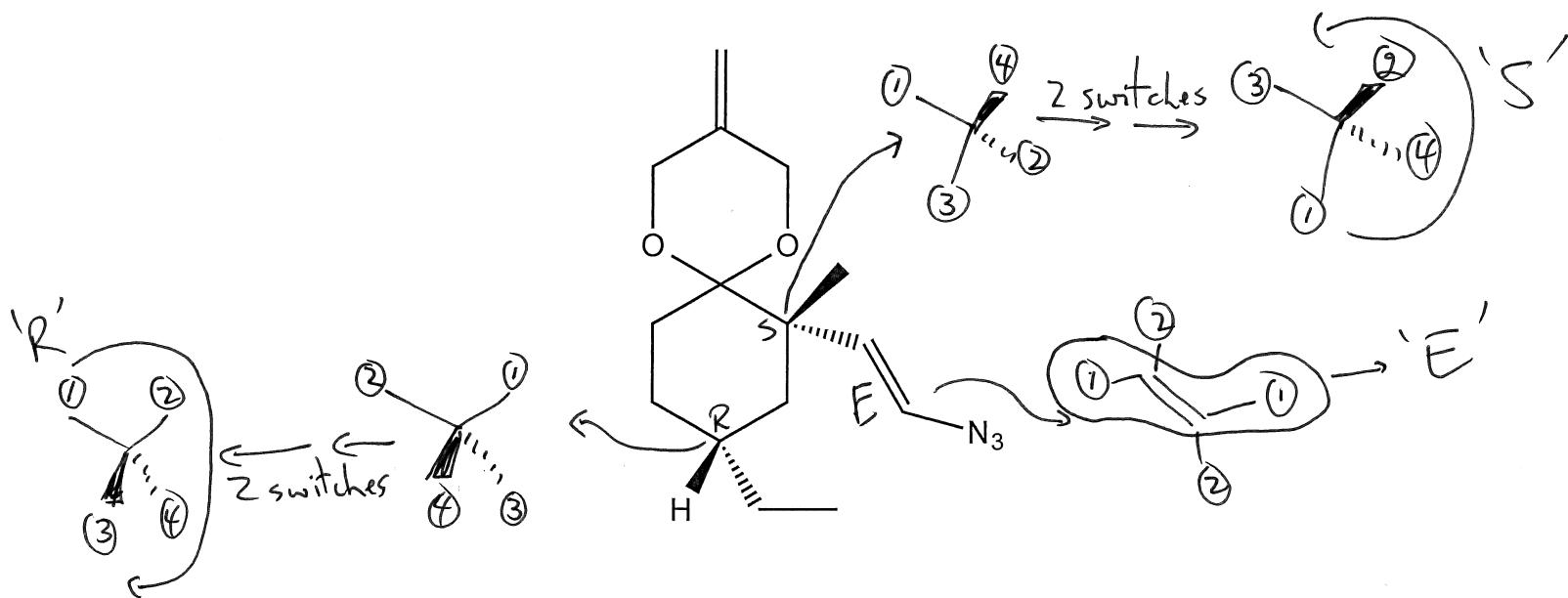
- (b) Rank these resonance structures in terms of their contribution to the overall character of this species and indicate degenerate structures (structures of equal energy), if any. Explain your reasoning.

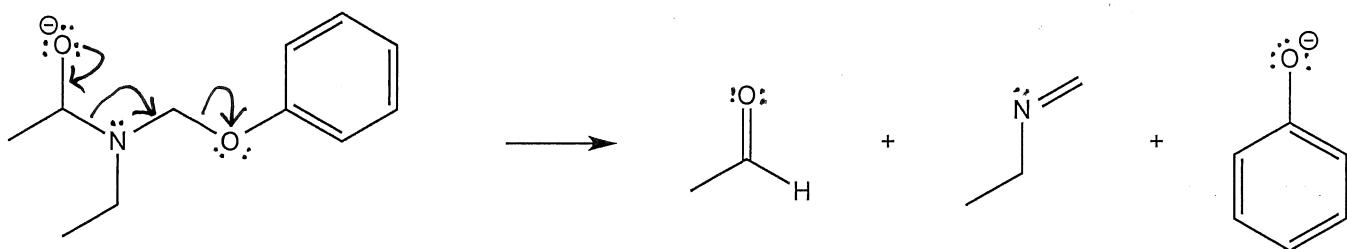




All 3 structures follow the octet rule. The only difference between the structures is the atom which is negatively charged. Oxygen is more electronegative and therefore the best structure. Nitrogen is the next most electronegative and therefore structure 1 is better than 2, which has the negative charge on carbon.

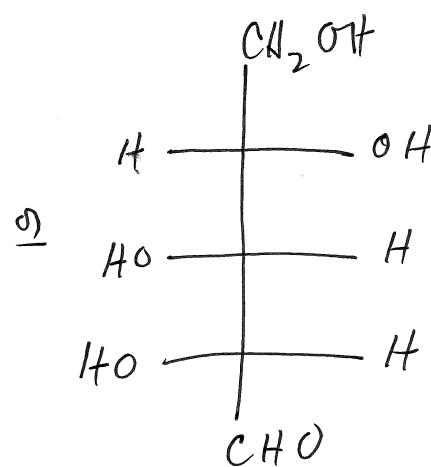
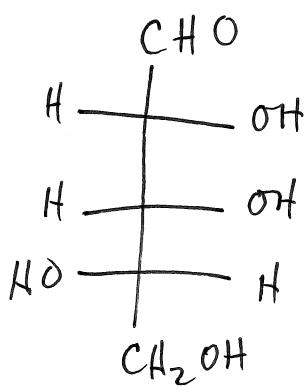
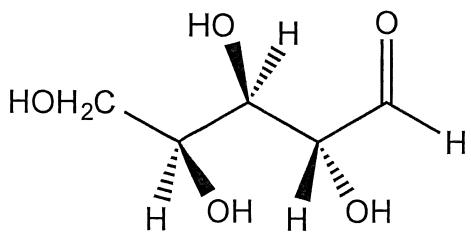
6. Draw the two chair conformers for the following molecule and identify the most stable conformer. All axial and equatorial bonds must be drawn, and they will be graded for proper placement. [5 marks]

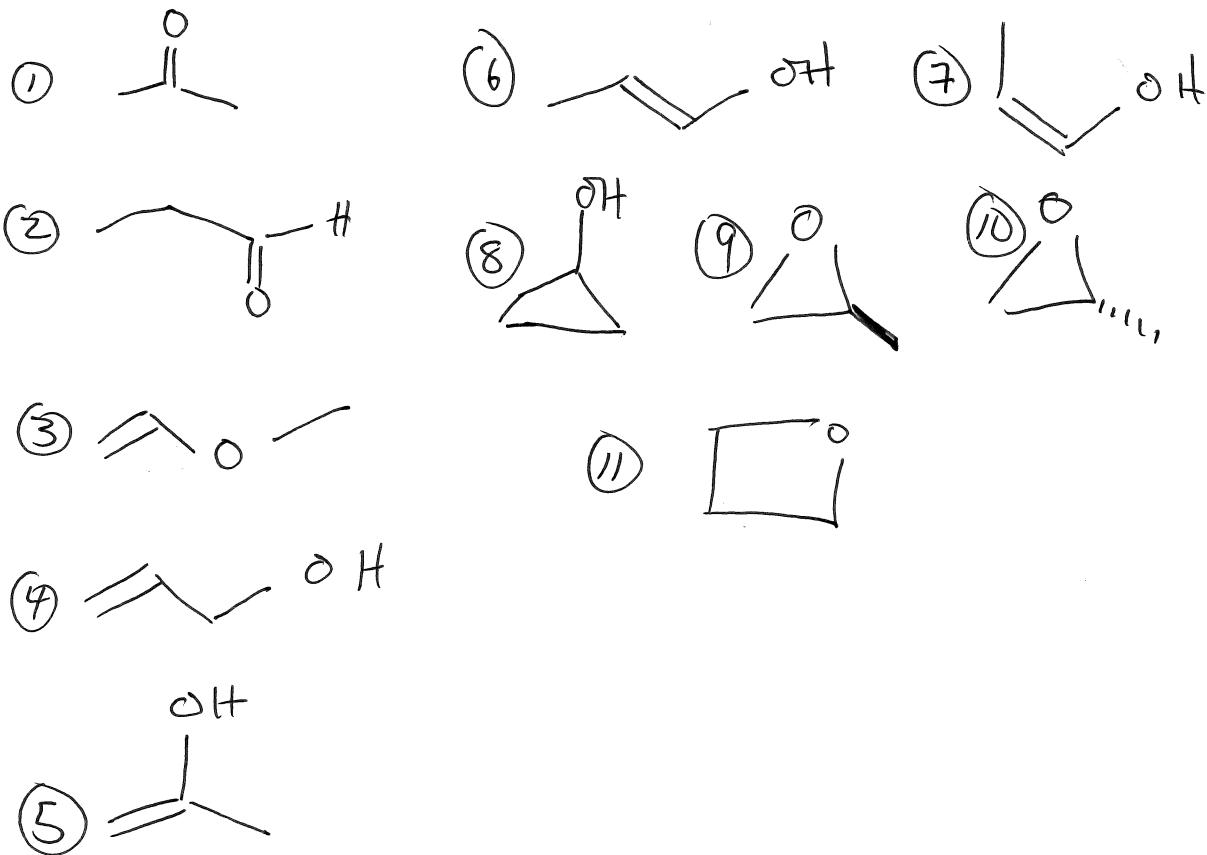
most stable, more
groups equatorial



7. Rank the following compounds in decreasing order of their expected boiling points (from highest boiling point to lowest boiling point). **[3 marks]**


highest → lowest


8. Draw the product(s) of the following reaction. Where appropriate, include lone pairs and formal charges. **[5 marks]**




9. For the molecule below, where appropriate, assign the stereochemical configuration(s) as *E*, *Z*, *R* or *S*. For full marks, you must show the priority numbers you used to assign each configuration and it must be clear what part of the molecule is being described as *E*, *Z*, *R* or *S*. **[6 marks]**


10. Draw the curved arrows that accomplish the following transformation. Include all lone pairs. **[4 marks]**

11. Convert the following zig-zag line drawing into its corresponding Fischer projection. **[4 marks]**

12. Draw *all* isomers (constitutional and stereo) for C_3H_6O . There are between 1 and 15 isomers. All molecules are neutral, and every atom has a formal charge of zero. **Only line structures will be graded (NO expanded or condensed structures).** [12 marks]

Some Useful Data

Principal Functional Group Priority List

Carboxylic acid

Sulfonic acid

Ester

Acid chloride

Amide

Nitrile

Aldehyde

Ketone

Alcohol

Thiol

Amine

CHEM 1000 Standard Periodic Table

1 1.0079 H 1	2 9.0122 Be 4	3 6.941 Li 3	4 22.9898 Na 11	5 24.3050 Mg 12	6 39.0983 K 19	7 40.078 Ca 20	8 44.9559 Sc 21	9 47.88 Ti 22	10 50.9415 V 23	11 51.9961 Cr 24	12 54.9380 Mn 25	13 55.847 Fe 26	14 58.9332 Co 27	15 58.693 Ni 28	16 63.546 Cu 29	17 65.39 Zn 30	18 69.723 Ga 31	19 72.61 Ge 32	20 74.9216 As 33	21 78.96 Se 34	22 79.904 Br 35	23 83.80 Kr 36
24 87.62 Rb 37	25 88.9059 Sr 38	26 91.224 Y 39	27 92.9064 Zr 40	28 95.94 Nb 41	29 (98) Mo 42	30 101.07 Tc 43	31 102.906 Ru 44	32 106.42 Rh 45	33 107.868 Pd 46	34 110.42 Ag 47	35 112.411 Cd 48	36 114.82 In 49	37 118.710 Sn 50	38 121.757 Sb 51	39 127.60 Te 52	40 126.905 I 53	41 131.29 Xe 54					
42 132.905 Cs 55	43 137.327 Ba 56	44 La-Lu 72	45 178.49 Hf 73	46 180.948 Ta 74	47 183.85 W 75	48 186.207 Re 76	49 190.2 Os 77	50 192.22 Ir 78	51 195.08 Pt 79	52 196.967 Au 80	53 200.59 Hg 81	54 204.383 Tl 82	55 207.19 Pb 83	56 208.980 Bi 84	57 (210) Po 85	58 (210) At 86	59 (222) Rn					
46 (223) Fr 87	47 226.025 Ra 88	48 Ac-Lr 104	49 (261) Rf 105	50 (262) Db 106	51 (263) Sg 107	52 (262) Bh 108	53 (265) Hs 109	54 (266) Mt 110	55 (281) Dt 111	56 (283) Rg												

57 138.906 La 57	58 140.115 Ce 58	59 140.908 Pr 59	60 144.24 Nd 60	61 (145) Pm 61	62 150.36 Sm 62	63 151.965 Eu 63	64 157.25 Gd 64	65 158.925 Tb 65	66 162.50 Dy 66	67 164.930 Ho 67	68 167.26 Er 68	69 168.934 Tm 69	70 173.04 Yb 70	71 174.967 Lu 71
89 227.028 Ac 89	90 232.038 Th 90	91 231.036 Pa 91	92 238.029 U 92	93 237.048 Np 93	94 (240) Pu 94	95 (243) Am 95	96 (247) Cm 96	97 (247) Bk 97	98 (251) Cf 98	99 (252) Es 99	100 (257) Fm 100	101 (258) Md 101	102 (259) No 102	103 (260) Lr 103

Developed by Prof. R. T. Boeré