CHEMISTRY 2500: Organic Chemistry I MIDTERM-2 Thursday, November 7, 2019

Instructions:

- This exam paper consists of 10 questions.
- The exam is worth a total of 50 marks. Most of these marks are for explanation/showing your work rather than for reaching the correct answer. Explain all of your answers fully using diagrams where appropriate (a picture really is worth a thousand words!).
- Marks will be deducted for poorly drawn structures.
- No calculators allowed. No other electronic devices can be present with you during the exam unless authorized by the instructor.
- You may use a molecular model kit.
- There is a 2-hour time limit.
- If your work is not legible, it will be given a mark of zero.
- **Read the questions carefully**. Good luck.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked and returned. I understand that, if I were to break this agreement, I would be choosing to commit academic misconduct, a serious offense that will be punished. The minimum punishment would be a mark of 0 on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: ____

Course: CHEM 2500 (Organic Chemistry I) Semester: Fall 2019 The University of Lethbridge Date: _____

Question Breakdown

Q1	/6	Q7	/4
Q2	/4	Q8	/4
Q3	/6	Q9	/5
Q4	/5	Q10	/5
Q5	/5		
Q6	/6		

1. Consider the following compound with molecular formula C₅H₈O₂:

 $C_5H_8O_2$

(a) Draw a constitutional isomer that has an approximate pka of 9.

(b) Draw a constitutional isomer that has an approximate pka of 12.

(c) Draw a constitutional isomer that has an approximate pka of 20.

2.

(a) Draw the conjugate base beside each of the following acids.

[4 marks]

NH₄Cl

(b) Draw the conjugate acid beside each of the following bases.

3. For each of the following reactions:

(i) Add all lone pairs and identify the acid and base.

(ii) Draw the mechanistic arrows showing the proton transfer reaction.

(iii) Draw the products of that proton transfer reaction and then predict the position of the equilibrium (reactant or product favoured). [6 marks]

4. Thiols are good nucleophiles and, like alcohols, can react with carbonyl groups to form hemithioacetals. Provide a mechanism using curved arrows to predict the product of the following reaction. Be sure to consider your reaction conditions. [5 marks]

- 5. Consider the following Friedel-Crafts acylation reaction:
 - (i) Add all lone pairs.
 - (ii) Add mechanistic arrows to show the flow of electrons.

(iii) Label each arrow as either Proton Transfer (P.T), Nucleophilic Attack (N.A.), or Leaving Group Loss (L.G.L.) [5 mark]

6. Suggest reagents that could be used to synthesize the following molecule in two different reactions; one from an aldehyde and one from a ketone. [6 marks]

[4 marks]

9. Predict which of the following compounds is more acidic and explain your choice. [5 marks]

10. Under acidic conditions, D-ribose is converted to the hemiacetal, D-ribofuranose. Use curved arrows to draw a plausible mechanism for the following reaction. Be sure to consider your reaction conditions.

[5 marks]

APPENDIX C

pK_a Values¹ of Selected Organic Compounds

Compound	p <i>K</i> a	Compound	р <i>К</i> а	Compound	p <i>K</i> a
HBr	-9	CO ₂ H		$CH_2(C=N)_2$	11
⊕ OH			4.2	$H_{2}O_{2}$	11.6
ОН		\oplus		CCI ₃ CH ₂ OH	12.2
	-8	NH ₃		O O 	
\oplus			4.6		
		CH ₃ CO ₂ H	4.8	нн	13
CH ₃				CHCI ₂ CH ₂ OH	12.9
	-6	Ľ N⊕		CH ₃ CHO	13.6
HCI	-7	п	5.2	CH ₂ CICH ₂ OH	14.3
		H ₂ CO ₃	6.4	⊢ ⊢ H	45
H₃C´⊕`CH₃	-3.8	HN H	<u> </u>		15
H ₂ SO ₄	-3		6.9	СН ₃ ОН	15.5
н		H ₂ S	7.0	H ₂ 0	15.7
H₃C´⊕́`H	-2.2	SH		CH ₃ CONH ₂	15.1
	-2.6		7.8	(CH ₃) ₃ COH	17
н 0+	_1 7	CH ₃ C(0)00H	8.2	CH₃COCH₃	20
	_1 3	0 0 		HC≡CH	24
	-1.0			$N \equiv C - CH_3$	25
	-0.2	нн	9	H ₂ C	
	1.2	NH4 ⁺	9.2		34
	1.0	H–C≡N	9.4	ц °	36
	1.0	⁻ CO ₂ CH ₂ NH ₃ +	9.7	п ₂	20
H ₃ PO ₄	2.1	(CH ₃) ₃ NH+	9.8	NП ₃	30
CH ₂ CICO ₂ H	2.9	OH			
HF	3.2		10.0		41
CO ₂ H		CH ₃ CH ₂ SH	10.5	H	
$O_2 N^{\prime}$	3.4	CH ₃ NO ₂	10.3		43
CH20CH2CO2H	3.6	o o		CH ₂ =CH-CH ₃	43
HCO ₂ H	3.8			$CH_2 = CH_2$	44
		H H	11	$\mathrm{CH}_3\mathrm{CH}_3$	48

¹ pK_a values obtained in aqueous solutions at 25 °C. pK_a values less than 0 and greater than 15.7 are corrected values from measurements in other solvents.

hydrogen	7																	balium
1 1 1																		2
L L																		L
																		пе
1.0079	handlum	1		Key:	olomont name		1						horon	aarbon	nitrogon	0814000	fluorino	4.0026
3	4			at	omic num	ber							5	6	7	8 oxygen	9	10
1.	Po				umh								D	Ċ	N	Ô	C	No
	De											Г	ne					
6.941 sodium	9.0122 meanesium			atomic we	light (mean rel	ative mass)]						10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180
11	12												13	14	15	16	17	18
Na	Ma												A I	C:	D	C		۸r
INA	ING												AI	5		3		A
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cohalt	nickel	copper	zinc	26.982 callium	28.086 cermanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 kryptop
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fo	Co	Ni	Cu	Zn	Ga	Go	Δc	So	Br	Kr
	Ua		90		×			16	00		u	211	Ja	Ge	73	00		
39.098 rubidium	40.078 strontium	-	44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rh	Sr		V	7r	Nh	Mo	To	Ru	Rh	Pd	Δα	Cd	In	Sn	Sh	Τo		X۵
05.400	07.00		00.000		00.000		1001	101.07	400.04	100.40	<u> </u>		444.00			107.00	400.00	
caesium	barium		lutetium	91.224 hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ra	*	1.0	Hf	Ta	W	Re	0s	lr l	Pt	Διι	Ha	TI	Ph	Ri	Po	Δt	Rn
422.04	497.99		474.07	179.40	100.05	402.04	400.04	400.00	400.00	405.00	406.07	200 50	204.20	007.0	200.00	120001	124.01	10001
francium	radium		lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	204.38	207.2 ununquadium	208.98	209	210	222
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	l r	Rf	Dh	Sa	Rh	He	Mt	Uun	Unn	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	13861	[264]	12801	[268]	[274]	[979]	[277]		12801				
[223]	[220]		[202]	[201]	[202]	[200]	[204]	[200]	[200]	[271]	212	211	1	[208]	1			
			lanthanum	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterblum 70		
	41 - 11				D		Direc	0				Die			—			
	*lantha	noids	La	Ce	Pr	Na	Pm	Sm	Eu	Ga	D	Dy	HO	Er	Im	YD		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
			actinium 89	thorium 90	protactinium 91	92	neptunium 93	plutonium 94	americium 95	curium 96	97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102		
	**	a lala		Th	De			D	A	0	DI	ő						
	**actin	olas	AC	l I N	Pa	U	ри	ru	AM	Cm	BK	UT	ES	r m		NO		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		