\qquad
\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 7 pages of questions and a data/periodic table sheet.
2) Unless otherwise stated in the question, explain all of your answers fully. Use diagrams where appropriate. When invoking any argument based on resonance, you must draw all relevant resonance structures.
3) ALL structures must be drawn showing lone pairs, non-zero formal charges and reasonable bond angles - regardless of whether they are expanded, condensed or line-bond. Marks will be deducted for poorly drawn structures.
4) Marks will be deducted for incorrect information added to an otherwise correct answer.
5) If your work is not legible, it will be given a mark of zero.
6) Calculators are not allowed. You are not permitted to have any electronic devices with you during the exam unless authorized by the instructor.
7) You may use a molecular model kit.
8) You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00 pm Mountain Time on Thursday, February $13^{\text {th }}$, 2020. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 70$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad -
Course: CHEM 2500 (Organic Chemistry I) Semester: Spring 2020
The University of Lethbridge

Date: \qquad

Question Breakdown

Q1	$/ 7$
Q2	$/ 5$
Q3	$/ 8$
Q4	$/ 10$
Q5	112
Q6	110
Q7	110
Q8	$/ 8$

Total	$/ 70$

NAME: \qquad
\qquad
\qquad

1. The molecule below is camphor, one of the main ingredients in Buckley's original cough syrup and Vick’s Vaporub:

(a) What is the molecular formula for camphor?
(b) Circle and name the functional group in camphor.
(c) Draw a * at each chirality center in camphor. Marks will be deducted for extra * on atoms that aren't chirality centers.
(d) What is the definition of a chiral molecule? According to this definition, is camphor chiral or achiral?
2. Draw both chair conformers of trans-1-isopropyl-3-methylcyclohexane. Write "more stable" under the more stable of the two conformers.
\qquad
\qquad
\qquad
3. For each of the molecules below, assign the stereochemical configuration(s) as E, Z, R or S.

For full marks, you must show the priority numbers you used to assign each configuration and it must be clear what part of the molecule is being described as E, Z, R or S. [8 marks]
(a)

(b)

(c)

(d)

\qquad
\qquad
\qquad
4. Name each of the following molecules according to IUPAC rules.

You do not need to explain your names.
(a)

(b)

(c)

(d)

(e)

\qquad
\qquad
\qquad
5. For each of the following pairs of molecules:
[12 marks]

- circle the most acidic hydrogen atom(s) on each molecule,
- identify the stronger acid, and
- explain why it is the stronger acid (in terms of chemical structure(s); I am looking for more than numbers from a table)
(a)

vs

(b)

VS

(c)

vs

\qquad
\qquad
\qquad
6. Carbonate ions $\left(\mathrm{CO}_{3}^{2-}\right)$ are strong enough bases to deprotonate phenols but not aliphatic alcohols like methanol, ethanol or propanol.
(a) Draw resonance structures that demonstrate why phenol is a stronger acid than ethanol.
[4 marks]
(b) Use pKa values to explain why a carbonate ion can deprotonate a significant fraction of molecules in a sample of phenol. Your answer should include a balanced reaction equation. [3 marks]
(c) Use pKa values to explain why a carbonate ion will NOT deprotonate a significant fraction of molecules in a sample of methanol. Your answer should include a balanced reaction equation.
\qquad Student Number: \qquad
7. Draw all structural isomers with the molecular formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrCl}$.

Marks may be deducted if the same isomer is drawn multiple times.
\qquad
\qquad
\qquad
8. What is the relationship between each of the following pairs of molecules?

For each pair, indicate whether they are:

- C - conformers,
- D - diastereomers,
- E-enantiomers,
- SI - structural isomers, or
- I - identical molecules
(a)

and

(b)

and

(c)

and

(d)

and

\qquad Student Number: \qquad

Some Useful Data

Principal Functional Group Priority List

Carboxylic acid
Sulfonic acid
Ester
Acid chloride
Amide
Nitrile
Aldehyde
Ketone
Alcohol
Thiol
Amine

1	Chem 1000 Standard Periodic Table														16	17	18
1.0079	2	3	4	5	6	7	8	9	10	11	12	$\begin{array}{r} 13 \\ \hline 10.811 \\ { }_{5} \mathbf{B} \\ \hline \end{array}$	14	15			$\begin{array}{\|l} \hline 4.0026 \\ \mathbf{H e} \end{array}$
${ }_{1} \mathbf{H}$																	
$\begin{array}{r} 6.941 \\ \mathbf{L i} \end{array}$	9.0122 $\mathbf{B e}$												12.011 C	14.0067 \mathbf{N}	15.9994 \mathbf{O}	$\stackrel{18.9984}{\text { F }}$	20.1797 Ne
3	4												6	7	8	9	10
$\begin{gathered} 22.9898 \\ \mathbf{N a} \end{gathered}$	$\begin{array}{\|c} \hline 24.3050 \\ \mathbf{M g} \end{array}$											$\begin{array}{\|c\|} \hline 26.9815 \\ \mathbf{A l} \end{array}$	$\begin{array}{\|c} \hline 28.0855 \\ \mathbf{S i} \end{array}$	$\begin{gathered} 30.9738 \\ \mathbf{P} \end{gathered}$	$\begin{array}{\|c\|} \hline 32.066 \\ \mathrm{~S} \end{array}$	$\begin{array}{\|c} \hline 35.4527 \\ \text { Cl } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 39.948 \\ \mathbf{A r} \end{array}$
11	12											13	14	15	16	17	
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Хe
37	38	39	40	41	42	43	44	45	$\begin{array}{\|l\|} \hline 46 \\ \hline 195.08 \\ \mathbf{P t} \\ 78 \end{array}$	196.967 Au 79	$\begin{aligned} & 48 \\ & \hline 200.59 \\ & \mathbf{H g} \\ & 80 \end{aligned}$	$\begin{array}{\|l} \hline 49 \\ \hline \begin{array}{l} 204.383 \\ \mathrm{Tl} \\ 81 \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 50 \\ \hline 207.19 \\ \mathbf{P b} \\ 82 \end{array}$	$\begin{array}{\|l\|} \hline 51 \\ \hline 208.980 \\ { }_{83} \mathbf{B i} \\ \hline \end{array}$	52	53	54
$\begin{gathered} 132.905 \\ \text { Cs } \\ 55 \\ \hline \end{gathered}$	137.327	La-Lu	$\begin{array}{\|c\|} \hline 178.49 \\ \mathbf{H f} \\ 72 \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{c} 41 \\ \hline 180.948 \\ 73 \end{array} \\ \hline 7 a \end{array}$	$\begin{array}{\|c} \hline 183.85 \\ \mathbf{W} \end{array}$	$\begin{array}{\|l\|} \hline 186.207 \\ \mathbf{R e} \\ 75 \\ \hline \end{array}$	$\begin{gathered} 190.2 \\ \mathbf{O s} \\ 76 \end{gathered}$	$\begin{array}{\|l\|} \hline 192.22 \\ \text { Ir } \\ 77 \end{array}$							(210)	(210)	(222)
	Ba														Po	At	Rn
	56														84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			58	59	60	61	62	63	64	65	66	67	68	69	70		
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	${ }_{93}$	94	95	96	97	98	99	100	101	102	103	

Developed by Prof. R. T. Boeré (updated 2016)

