\qquad
\qquad
\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 8 pages of questions and a data/periodic table sheet.
2) Unless otherwise stated in the question, explain all of your answers fully. Use diagrams where appropriate. When invoking any argument based on resonance, you must draw all relevant resonance structures.
3) ALL structures must be drawn showing lone pairs, non-zero formal charges and reasonable bond angles - regardless of whether they are expanded, condensed or line-bond. Marks will be deducted for poorly drawn structures.
4) Marks will be deducted for incorrect information added to an otherwise correct answer.
5) If your work is not legible, it will be given a mark of zero.
6) Calculators are not allowed. You are not permitted to have any electronic devices with you during the exam unless authorized by the instructor.
7) You may use a molecular model kit.
8) You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam with (or in the presence of) any student who has not written it until after $5: 00 \mathrm{pm}$ Mountain Time on Monday, March $16^{\text {th }}$, 2020 (the Monday after the official date of the test). I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 60$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 2500 (Organic Chemistry I) Semester: Spring 2020
The University of Lethbridge

Date: \qquad
\qquad
\qquad
\qquad

1. For each of the pairs of molecules below, circle the better electrophile and briefly explain your choice. Your explanations must make it clear that you know what the term electrophile means.
[4 marks]
(a)

vs.

(b)

vs.

2. For each of the pairs of molecules below, circle the better nucleophile and briefly explain your choice. Your explanations must make it clear that you know what the term nucleophile means.
[4 marks]
(a)

$$
\mathrm{CH}_{3} \mathrm{OH}
$$

vs.
$\mathrm{CH}_{3} \mathrm{O}^{\ominus}$
(b)

$$
\mathrm{CH}_{3} \mathrm{OH}
$$

vs.
\qquad
\qquad
\qquad
3.
(a) The drawings below show nucleophiles moving toward an aldehyde from different directions. Assuming each nucleophile continues along its current path, circle all of the nucleophiles that would be able to react with the aldehyde when they hit it.
Please make the simplifying assumption that the aldehyde is not moving.
Marks will be deducted for incorrect circles.

top view of aldehyde

side view of aldehyde
(b) The drawings below show electrophiles moving toward an alkene from different directions. Assuming each electrophile continues along its current path, circle all of the electrophiles that would be able to react with the alkene when they hit it.
Please make the simplifying assumption that the alkene is not moving.
Marks will be deducted for incorrect circles.

top view of alkene

side view of alkene
\qquad
\qquad
\qquad
4. Under each potential Grignard reagent, circle "yes" or "no" to indicate whether or not it could be prepared.
[4 marks]
(a)

(b)

yes / no
(c)

(d)

yes / no
yes / no
5. Consider the reaction below:
[5 marks]

(a) Briefly describe how you would prepare the Grignard reagent shown above. Your answer should be a reaction equation including all essential information.
[3 marks]
(b) Complete the diagram for this reaction by adding curved arrows to show electron movement and drawing the product. Do NOT assume any work-up steps that are not shown. [2 marks] Answer directly on the diagram above.
\qquad
\qquad
\qquad
6. Draw the major organic product of each of the following reactions. Clearly show any relevant stereochemistry. If a mixture of enantiomers is formed, write "racemic" next to the product.
[10 marks]
(a)

$\xrightarrow[\text { 2. } \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}]{\text { 1. } \mathrm{CH}_{3} \mathrm{Li}, \text { THF }}$
(b)

1. LiAlH_{4}, THF
2. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$
(c)

(d)

(e)

\qquad
\qquad
\qquad
3. Draw the major organic product of each of the following reactions. Clearly show any relevant stereochemistry. If a mixture of enantiomers is formed, write "racemic" next to the product.
[10 marks]
(a)

$$
\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{CH}_{3} \mathrm{OH}}
$$

(b)

(c)

(d)

(e)

\qquad
\qquad
\qquad
8. Consider the reaction below:

(a) Draw a mechanism for this reaction.
[3 marks]
(b) Explain the regioselectivity of this reaction. In other words, why does each halogen atom wind up attached to the particular carbon atom shown?
[3 marks]
(c) Explain the stereospecificity of this reaction. In other words, why is only one diastereomer of product formed?
[2 marks]
\qquad
\qquad
9. The linear form of deoxyribose is shown below.
[6 marks]

Deoxyribose exists primarily in the furanose form (hemiacetal with 5 -atom ring).
Draw a mechanism showing the acid-catalyzed reaction in which linear deoxyribose is converted to the furanose form.
You may assume the presence of as much $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$ as your mechanism requires.
You do NOT need to show stereochemistry.
\qquad
\qquad Student Number: \qquad
10. Show how the alcohol below can be prepared starting with propyne (also shown below). Your answer should be a series of reaction equations. Please show the product of each step. You do not need to include mechanisms; however, there will be no penalty for adding them if they help you think.

\qquad Section: \qquad Student Number: \qquad

Some Useful Data

Principal Functional Group Priority List

Carboxylic acid
Sulfonic acid
Ester
Acid chloride
Amide
Nitrile
Aldehyde
Ketone
Alcohol
Thiol
Amine

1	Chem 1000 Standard Periodic Table											13	1415		16	17	18		
$\begin{gathered} 1.0079 \\ \mathbf{H} \end{gathered}$	2														$\begin{gathered} 4.0026 \\ \mathbf{H e} \end{gathered}$				
1															2				
6.941	9.0122	3	4	56		7	8	9	$10 \quad 11$		12	10.811	12.011	14.0067		15.9994	18.9984	20.1797	
Li	Be					B					C	N	O	F		Ne			
3	4					5					6	7	8	9	10				
22.9898	24.3050					26.9815					28.0855	30.9738	32.066	35.4527	39.948				
Na	Mg					Al					Si	P	S	Cl	Ar				
11	12					13					14	15	16	17	18				
39.0983	40.078	44.9559	47.88	50.9415	51.9961		54.9380	55.847	58.9332	58.693		63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr		Mn	Fe	Co	Ni		Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
19	20	21	22	23	24		25	26	27	28		29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94		(98)	101.07	102.906	106.42		107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo		Tc	Ru	Rh	Pd		Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)		
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn		
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)		
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og		
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967			
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71			
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)			
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103			

Developed by Prof. R. T. Boeré (updated 2016)

