INSTRUCTIONS: 1) Please read over the exam carefully before beginning. This exam consists of 7 questions.
2) You have also been given a Spectral Data Booklet. Please do not write on theses data sheets! If you need scrap paper, use the back of the cover page or the back of the last page.
3) You may use a molecular model kit and a ruler. You may not have any papers or other written materials in your model kit.
4) No electronic devices can be present with you during the exam unless authorized by the instructor.
5) If your work is not legible, it will be given a mark of zero.
6) Marks will be deducted for incorrect information added to an otherwise correct answer.
7) You have 2 hours to complete this exam.
8) Most of the marks on the exam are for explaining/showing your work rather than for reaching the correct answer. Explain all of your answers fully. Hint: Figures really are worth a thousand words! If you are using a resonance argument to make a point, you must show the pertinent structures.
9) Marks will be deducted for poorly drawn structures.
10) Although complete sentences are not required (point form is acceptable), marks will be deducted for poor spelling and grammar.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until they have all been marked and returned. I understand that, if I were to break this agreement, I would be choosing to commit academic misconduct, a serious offense which will be punished. The minimum punishment would be a mark of 0% on this exam and the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 2600 (Organic Chemistry II)
Semester: Fall 2017
The University of Lethbridge

Date: \qquad

Chem 2600 Midterm \#1

October, 2017

Question One (8 marks)

Referring to the structures below, are the underlined atoms/groups homotopic, enantiotopic, diastereotopic or none of the above? No explanation is required.
a)
 CH_{3} and CH_{3}
b)

c)

Question Two (4 marks)

How could you distinguish between the following 4 molecules using only ${ }^{1} \mathrm{H}$ decoupled ${ }^{13} \mathrm{C}$ NMR $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and ${ }^{13} \mathrm{C}$ DEPT 135 NMR (CH and $\mathrm{CH}_{3}: \uparrow, \mathrm{CH}_{2} \downarrow$, quaternary C not observed)?

Question Three (10 marks)

(a) Use the grid below and the provided scale to draw and label a complete tree diagram with accompanying spectrum for a doublet $(18 \mathrm{~Hz})$ of doublets $(8 \mathrm{~Hz})$ of quartets $(2 \mathrm{~Hz})$.

(b) Draw a molecule or part of a molecule containing a proton (Ha) which could give this doublet of doublets of quartets pattern. Make sure that your labels are consistent with those of your tree diagram.

Question Four (25 marks)

- Using the following spectra, deduce the structure of this unknown molecule with a molecular formula of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$.
- Label each peak on each NMR spectrum $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ as much as is possible and label any important IR bands.
- In the Mass Spectrum, identify and explain the origin of the two peaks at 107/109 amu and 180/182 amu.
- Explain all the logic you used to determine the structure of the unknown molecule.

(question four con't)

Question Five (6 marks)

In the boxes provided, label the ${ }^{13} \mathrm{C}$ NMR spectra (1-6) with the matching letter of the correct chemical structure (A-F). No explanation is required.

spectrum 1:

spectrum 2:

(question five con't)

spectrum 3:

spectrum 4:

spectrum 5:

spectrum 6:

Question Six (6 marks)

Consider the structure of p-tolyl acetate and its Mass Spectrum shown below.

- Give the structure of the fragment giving the peak at 107 amu .
- The peak at 108 amu is due to a McLafferty rearrangement. Give the structure of the rearrangement product and show the mechanism of its formation.

Question Seven (6 marks)

How many ${ }^{1} \mathrm{H}$ signals and how many ${ }^{13} \mathrm{C}$ signals would you expect from each of the following molecules? No explanation is required.
(a)

$$
{ }^{1} \mathrm{H}=
$$

\qquad
\qquad
(b)

$$
{ }^{1} \mathrm{H}=
$$

\qquad

$$
{ }^{13} \mathrm{C}=
$$

\qquad
(c)

$$
{ }^{1} \mathrm{H}=
$$

\qquad
${ }^{13} \mathrm{C}=$ \qquad

																		He
Li	cen												come cin B	$\stackrel{\text { ctam }}{\text { ctam }}$	$\stackrel{\text { mosem }}{\substack{\text { man }}}$	$\mathrm{O}_{\substack{\text { mam }}}^{\text {m }}$	$\stackrel{\text { name }}{\text { nem }}$	$\begin{aligned} & \text { Non } \\ & \mathrm{Ne} \end{aligned}$
														$\begin{aligned} & 1049 \\ & \mathrm{n}_{14} \end{aligned}$	$\stackrel{1}{151}$			${ }^{\text {atr }}$
K			Sc	$\mathrm{Ti}^{\text {22 }}$	$\sqrt{23}$		$\begin{aligned} & \text { masem } \\ & \mathbf{2 5 n} \\ & M n \end{aligned}$	$\begin{aligned} & \substack{\text { nen } \\ \mathrm{Fen} \\ \mathrm{Fe}} \end{aligned}$		$\begin{aligned} & { }_{c}^{n_{2 a t e a f}^{28}} \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & \substack{\text { amer } \\ 29 \\ \mathrm{Cu} \\ \hline} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 2nac } \\ \text { Zn } \\ \text { Zn } \end{array}$					俍	${ }^{36}$
	S_{3}^{38}			$\begin{aligned} & 2010 \\ & \mathrm{Zan} \end{aligned}$	$\begin{aligned} & \text { Nan } \\ & \mathrm{Nan} \end{aligned}$	$\begin{array}{ll} 420 \\ \hline 102 \end{array}$	$\begin{gathered} 43 \\ a_{c} \end{gathered}$	$\begin{aligned} & \text { Ru4 } \\ & \text { Ru } \end{aligned}$	$\begin{aligned} & \substack{45 \\ \text { Rh } \\ \hline} \end{aligned}$	$\begin{aligned} & \text { Pd } \\ & \mathrm{Pd} \end{aligned}$	$\begin{array}{\|c} \\ A 7 \\ A 19 \end{array}$	$\begin{aligned} & \substack{\text { and } \\ C 8 \\ \hline} \end{aligned}$	$\begin{aligned} & 40 \\ & \text { In } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 100 \\ \text { Sn } \end{array}$	$\begin{aligned} & \text { Sp } \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & \text { and } \\ & \text { Te } \end{aligned}$	1	Xe
${ }^{\text {ams }}$		5770	7	720	${ }^{\text {mamem }}$	${ }^{\text {chem }}$	mis	${ }^{7} 7$	"7	${ }^{20}$	${ }_{79}^{908}$	${ }^{\text {momo }}$	81	${ }^{108}$	${ }^{83}$	${ }_{8}$	${ }^{85}$	Rn
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	${ }^{88}$					106												
Fr	${ }_{\text {R2ab }}$	**	Lr	$\xrightarrow[\text { Rf80 }]{ }$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

antha	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
		Th	Pa	$\stackrel{1}{\mathrm{~S}}$		Pu	Am	Cm	Bk	f	Es	Fm	Md	

