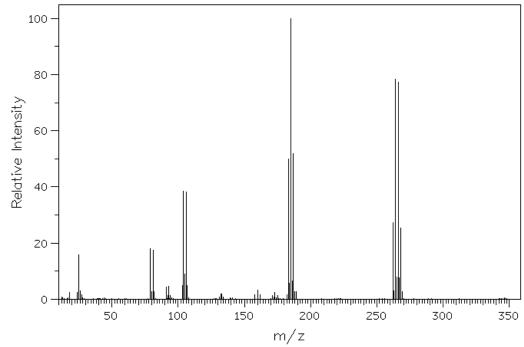
NAME:	Section: Student Number:							
Fall 2018	Chemistry 2600 Midterm/ 60							
INSTRUCTIONS:	1) Please read over the test carefully before beginning. You should have 7 pages							
	of questions in addition to this cover page and a periodic table.							
	2) You have also been given a 6 page Spectroscopy Data Package.							
	PLEASE DO NOT WRITE ON THE SPECTROSCOPY DATA PACKAGE! If you need scrap paper, use the back of any page of the test. On questions							
	with spectra, you may also do rough work directly on the spectra.							
	3) You may use a molecular model kit and ruler. You may not have any papers							
	or other written materials in your model kit.							
	4) You may use a calculator. It may not have wireless capability. You may not							
	have any other electronic devices (phone, iPod, etc.) with you when you write							
	the exam.							
	5) If your work is not legible, it will be given a mark of zero.							
	6) Marks will be deducted for incorrect information added to an otherwise							
	correct answer.							
	7) You have 2 hours to complete this test.							
Confidentiality Agree	eement:							
_	(or in any other way divulge) the contents of this exam until after 8:00pm Mountain							
	October 10 th , 2018. I understand that breaking this agreement would constitute							
	, a serious offense with serious consequences. The minimum punishment would							
	this exam and removal of the "overwrite midterm mark with final exam mark"							
	in this course; the maximum punishment would include expulsion from this							
university.								
Signature:	Date:							
	(Organic Chemistry II)							
Semester: Fall 2018								

The University of Lethbridge

Question Breakdown

Q1	/ 12
Q2	/ 10
Q3	/ 6
Q4	/ 6
Q5	/ 6
Q6	/ 20

Total / 60


NAME:	Section:	Student Number:	

1. For each of the following pairs of molecules, explain how you would use <u>two</u> spectroscopic methods to distinguish between them. Be specific. What peak(s) are you looking for? Where are they? Give numbers or ranges where possible. [12 marks] You may choose from ¹H NMR, ¹³C NMR, IR and MS. You may choose different spectroscopic methods for each pair of molecules. It must be clear which methods you have chosen.

$$\begin{array}{c} \vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ \end{array}$$

2. Consider the following mass spectrum for Unknown A:

[10 marks]

The following table lists the heights of all peaks with relative intensity higher than 10:

	The following tuble helping of an peaks with relative intensity ingher than 10.												
m/z	intensity		m/z	intensity		m/z	intensity		m/z	intensity		m/z	intensity
25	15.9		79	18.0		104	38.4		183	50.0		262	27.2
			81	17.4		106	38.3		185	100.0		264	78.4
									187	51.8		266	77.2
												268	25.4

(a) Which peak is the molecular ion?

[1 mark]

(b) What is the molecular formula for Unknown A?

[2 marks]

(c) Draw Unknown A.

[2 marks]

NAME:	Section:	Student Number:

- 2. ...continued
- (d) Explain the cluster of peaks from m/z 262 to m/z 268. Your answer should address exactly what each of the four peaks corresponds to as well as the ratio of the heights of the four peaks.

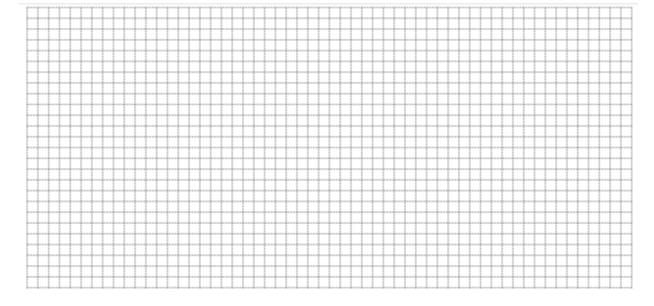
[5 marks]

3. Consider the molecule below. In the boxes provided, label each proton with the predicted splitting pattern it would exhibit in a 1H NMR spectrum. [6 marks] Assume that any long range coupling has J > 0 Hz.

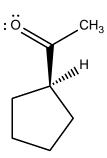
NAME:	Sections	Student Number
INAIVIE	Section:	Student Number:

4. [6 marks]

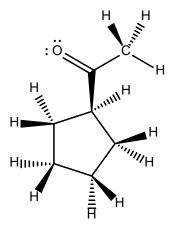
(a) Use the graph paper below to draw (to scale) a pentet (J = 8 Hz).


You do not need to draw the tree diagram.

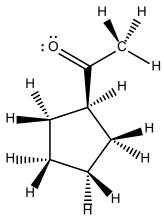
Use 1 square = 1 Hz as your horizontal scale. Line heights must also be to scale. [2 marks]


(b) Use the graph paper below to draw (to scale) a doublet (J = 10 Hz) of triplets (J = 2 Hz). You do not need to draw the tree diagram.

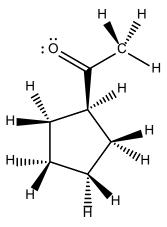
Use 1 square = 1 Hz as your horizontal scale. Line heights must also be to scale. [4 marks]


5. Consider the following molecule:

[6 marks]

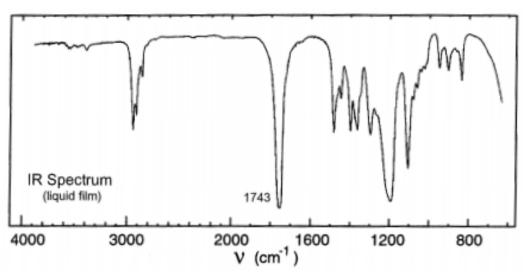

(a) On the picture below, circle two hydrogen atoms which are homotopic:

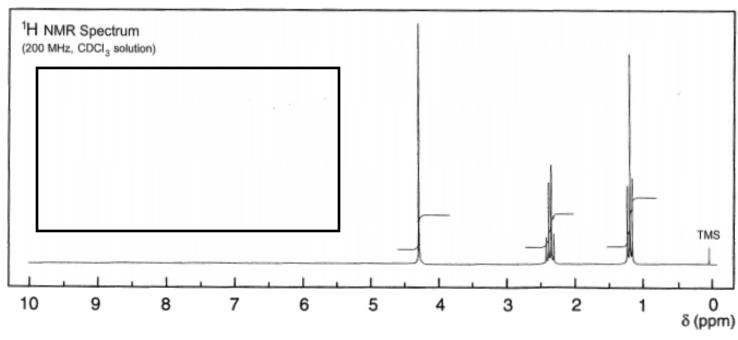
[2 marks]

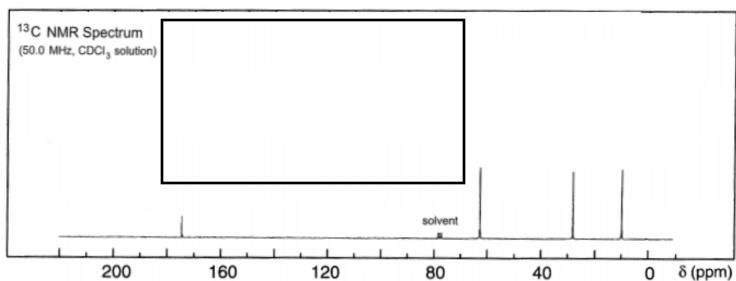

(b) On the picture below, circle two hydrogen atoms which are enantiotopic:

[2 marks]

(c) On the picture below, circle two hydrogen atoms which are diastereotopic:


[2 marks]




NAM	1E:	Section:	Student Number:	
6.	The following page contains spectra	for Unknown X	$C(C_8H_{14}O_4).$	[20 marks]
(a)	Identify Unknown X based on these	spectra. Draw	your answer in the box p	rovided below.
(b)	Use this page to explain your reasoni	ing.		
(c)	On both NMR spectra, assign as maright, drawing Unknown X in the box the appropriate peak number. For an to which they might reasonably corre	x provided, and toms that cannot	labeling each carbon or l	nydrogen atom with
(d)	Label any important peaks on the IR.		Unknown X:	

NAME:_____ Section:____ Student Number:____

$C_8H_{14}O_4$

NAME:	Section:	Student Number:
11/11/11.	Beenon.	Student I vanioer.

1			CH	EM 10	000 Sta	andaro	l Perio	odic Ta	able								18
1.0079																l	4.0026
H																	He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	C	N	O	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	•		_		_	•	•	10	4.4	10	Al	Si	P	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	1	120.006	140 115	140.000	144.04	(1.45)	150.26	151.065	157.05	150.025	160.50	164.020	167.06	160.024	172.04	174.067	1
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		57 227.028	58 232.038	59 231.036	60 238.029	61 237.048	62	63	64	65	66	(252)	68	69	70	71	1
							(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		Ac 89	Th 90	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				91	92	93	94	95	96	97	98	99	100	101	102	103	1

Developed by Prof. R. T. Boeré (updated 2016)