NAME:	Section: Student Number:
Fall 2019	Chemistry 2600 Midterm/ 65 marks
INSTRUCTIONS:	 Please read over the test carefully before beginning. You should have 8 pages of questions in addition to this cover page and a periodic table. You have also been given a 6 page Spectroscopy Data Package. PLEASE DO NOT WRITE ON THE SPECTROSCOPY DATA PACKAGE! If you need scrap paper, use the back of any page of the test. On questions with spectra, you may also do rough work directly on the spectra. You may use a molecular model kit and ruler. You may not have any papers or other written materials in your model kit. You may use a calculator. It may not have wireless capability. You may not have any other electronic devices (phone, iPod, etc.) with you when you write the exam. If your work is not legible, it will be given a mark of zero.
	 6) Marks will be deducted for incorrect information added to an otherwise correct answer. 7) You have 2 hours to complete this test.
Time on Tuesday, academic misconduction be a mark of 0/65 o	(or in any other way divulge) the contents of this exam until after 8:00pm Mountain October 8 th , 2019. I understand that breaking this agreement would constitute at, a serious offense with serious consequences. The minimum punishment would not this exam and removal of the "overwrite midterm mark with final exam mark" at in this course; the maximum punishment would include expulsion from this
Signature: Course: CHEM 2600 Semester: Fall 2019	Date: O (Organic Chemistry II)

The University of Lethbridge

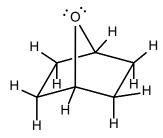
Question Breakdown

Q1	/ 12
Q2	/ 6
Q3	/ 8
Q4	/ 19
Q5	/ 20

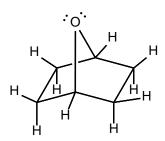
Total	/ 65

NAME:	Sections	Student Number
INAIVIE	Section:	Student Number:

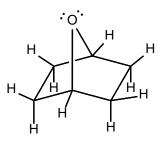
1. For each of the following pairs of molecules, explain how you would use <u>two</u> spectroscopic methods to distinguish between them. Be specific. What peak(s) are you looking for? Where are they? Give numbers or ranges where possible. [12 marks] You may choose from ¹H NMR, ¹³C NMR, IR and MS. You may choose different spectroscopic methods for each pair of molecules. It must be clear which methods you have chosen.


2. Consider the following molecule:

[6 marks]

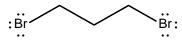

(a) On the picture below, circle two hydrogen atoms which are enantiotopic:

[2 marks]


(b) On the picture below, circle two hydrogen atoms which are diastereotopic:

[2 marks]

(c) On the picture below, circle two hydrogen atoms which are constitutionally different:


[2 marks]

NAME:	Section:	Student Number:
-------	----------	-----------------

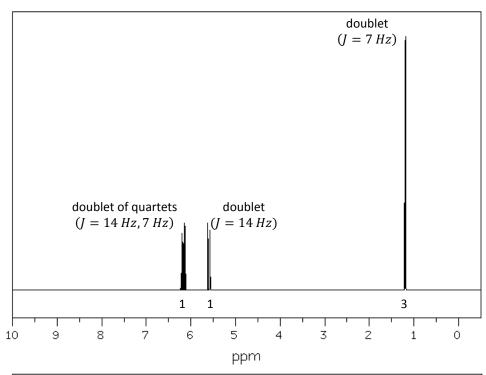
3. Consider the following molecule:

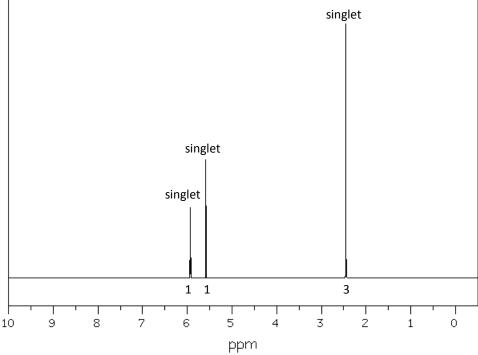
[8 marks]

(a) If you were to analyze this molecule by mass spectrometry, what would you expect to see <u>in the molecular ion region</u>? Your answer should address both the value(s) at which you would see peaks and the ratio of those peaks.

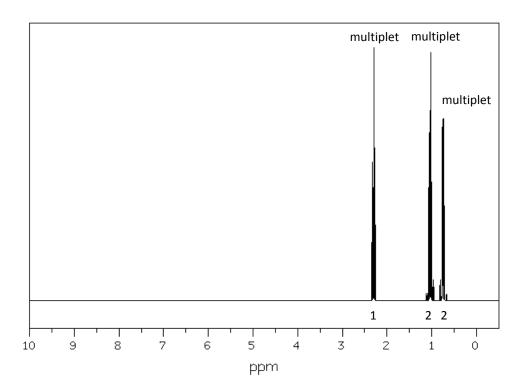
[4 marks]

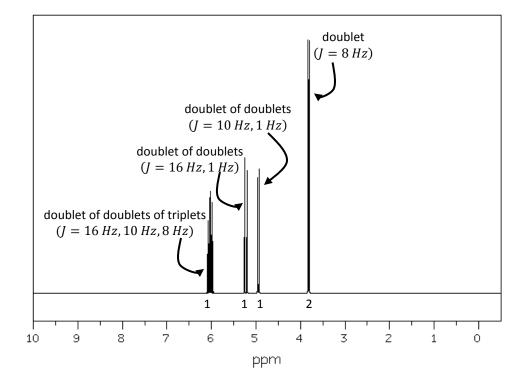
You do not need to explain your answer.

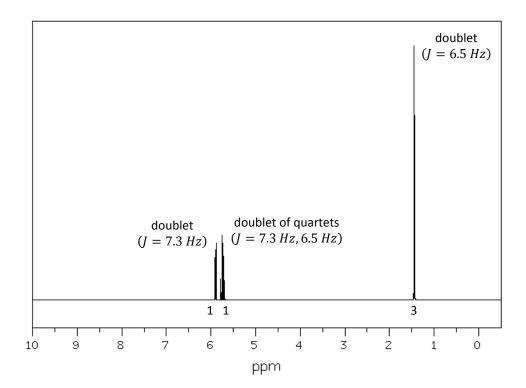

(b) Identify two fragments you would also expect to see on the mass spectrum. For each, identify both the value for the peak and the chemical formula for the fragment (or draw it). [4 marks] You do not need to explain your answer.


NAME:	Section:	Student Number:	

4. Including stereoisomers, five isomers are possible for C_3H_5I . ¹H NMR spectra for these five isomers are shown on the next three pages. Multiplicity and coupling constants (where applicable) are listed above each peak; integration is listed below.

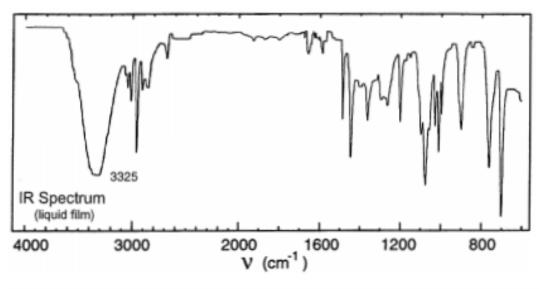

Next to each spectrum, draw the isomer to which it corresponds. Label each hydrogen (or set of

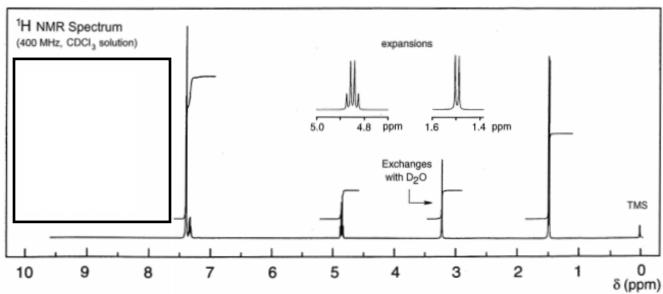

Next to each spectrum, draw the isomer to which it corresponds. <u>Label each hydrogen</u> (or set of shift equivalent hydrogens) with a unique number or letter. Use these labels to identify the ¹H NMR peak corresponding to each hydrogen. In cases where it is not possible to know which of two hydrogen atoms made each of two peaks, label both peaks with both options. [19 marks]

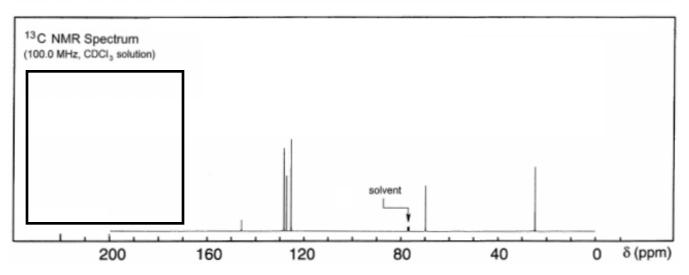


4. ...continued...

4. ... continued




NAM	ИЕ: S	Section:	Student Number:	
5.	The following page contains spectra for	or Unknown X	$(C_8H_{10}O).$	[20 marks]
(a)	Identify Unknown X based on these sp	pectra. Draw y	your answer in the box pr	ovided below.
(b)	Use this page to explain your reasonin	ıg.		
(c)	On both NMR spectra, assign as man right, drawing Unknown X in the box the appropriate peak number. For ato to which they might reasonably corres	provided, and loms that canno	labeling each carbon or h	ydrogen atom with
(d)	Label any important peaks on the IR.		Unknown X:	
		L		


NAME:_____ Section:____ Student Number:____

5. ...continued

$C_8H_{10}O$

NAME:	Section:	Student Number:

1			CH	EM 10	000 Sta	andaro	l Perio	odic Ta	able								18
1.0079																	4.0026
H																	He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	C	N	О	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	•		_		_		•	4.0		4.0	Al	Si	P	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	ı	120.005	140 115	140.000	11121	(1.15)	150.06	151055	155.05	150.025	1.52.50	1.54.020	1.7.2.	150.024	152.04	151055	1
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	-
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	j

Developed by Prof. R. T. Boeré (updated 2016)