\qquad
\qquad
\qquad
INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 7 pages of questions in addition to this cover page and a periodic table.
2) You have also been given a 6 page Spectroscopy Data Package. Please do not write on the Spectroscopy data Package! If you need scrap paper, use the back of any page of the test. On questions with spectra, you may also do rough work directly on the spectra.
3) You may use a molecular model kit and ruler. You may not have any papers or other written materials in your model kit.
4) You may use a calculator. It may not have wireless capability. You may not have any other electronic devices (phone, iPod, etc.) with you when you write the exam.
5) If your work is not legible, it will be given a mark of zero.
6) For full credit, explanations must be complete. In many cases, complete explanations include drawing relevant structures. If delocalization of electrons is invoked, the relevant resonance structures must be drawn.
7) Marks will be deducted for incorrect information added to an otherwise correct answer.
8) You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Monday, February $11^{\text {th }}$, 2019. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 52$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature:
Date: \qquad
Course: CHEM 2600 (Organic Chemistry II)
Semester: Spring 2019
The University of Lethbridge

Question Breakdown

	$/ 5$
Q1	$/ 12$
Q2	$/ 6$
Q3	$/ 6$
Q4	$/ 8$
Q5	115
Q6	

Total	

NAME: \qquad Section: \qquad Student Number: \qquad

1. In the boxes provided, label each mass spectrum with the letter for the corresponding molecule (A-E). No explanation is required.

A

B

C

E

\qquad
\qquad
\qquad
2. For each of the following pairs of molecules, explain how you would use two spectroscopic methods to distinguish between them. Be specific. What peak(s) are you looking for? Where are they? Give numbers or ranges where possible.
[12 marks] You may choose from ${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C} N M R$, IR and MS. You may choose different spectroscopic methods for each pair of molecules. It must be clear which methods you have chosen.
(a)

vs.

(b)

vs.

(c)

vs.

\qquad
\qquad
\qquad
3. The following pictures are all of the same molecule (also shown in the box at the right). Below each picture, write one of the following abbreviations ($\mathrm{H}, \mathrm{E}, \mathrm{D}$ or CD) to indicate the relationship between the circled hydrogen atoms:

- Homotopic (H)
- Enantiotopic (E)
- Diastereotopic (D)
- Constitutionally different (CD)

(a)

(c)

(d)

(d)

- -

(e)

\qquad
\qquad
4. Consider the ${ }^{1} \mathrm{H}$ NMR spectrum below. The peaks have been labeled A, B and C for your convenience.

Clearly identify which hydrogen atom corresponds to each peak and justify your answer. For full marks, your explanation must address the multiplicity (splitting pattern) of each peak.

NAME: \qquad
\qquad
\qquad
5. Consider the molecule below. In the boxes provided, label each proton (or set of protons) with the multiplicity (splitting pattern) it would be predicted to exhibit in a ${ }^{1} \mathrm{H}$ NMR spectrum.
Assume that any long range coupling has $J>0 \mathrm{~Hz}$.
[8 marks]

NAME: \qquad Section: \qquad Student Number: \qquad
6. The following page contains spectra for Unknown $\mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)$.
[15 marks]
(a) Identify Unknown X based on these spectra. Draw your answer in the box provided below.
(b) Use this page to explain your reasoning.
(c) On both NMR spectra, assign as many peaks as you can by numbering the peaks from left to right, drawing Unknown X in the box provided, and labeling each carbon or hydrogen atom with the appropriate peak number. For atoms that cannot be assigned with certainty, list the signals to which they might reasonably correspond.
(d) Label any important peaks on the IR.

Unknown X:

NAME: \qquad Section: \qquad Student Number: \qquad
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$

NAME: \qquad Section: \qquad Student Number: \qquad

1	CHEM 1000 Standard Periodic Table													15	16	17	18
1.0079	2											13	14				4.0026
H																	He
1																	
${ }^{6.941}$	${ }_{\text {9e }} 9.0122$	3	4	5	6	7	8	9	10	11	12	10.811 \mathbf{B}	${ }_{6}^{12.011}$	$\stackrel{14.0067}{\text { N }}$	${ }_{0}^{15.9994}$	$\underset{\text { F }}{18.998}$	$\underset{\substack{20.1997 \\ \mathrm{Ne}}}{ }$
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg											Al	Si	P	S	Cl	Ar
11	12											13	14	15	16	17	18
39.0983	40.078	44.9559	${ }^{47.88}$	50.9415	51.9961	54.9380	55.847	58.9332	58.693	${ }^{63.546}$	65.39	69.723	${ }^{72.61}$	${ }^{74.9216}$	78.96	79.904	83.80
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		
${ }^{85.4678}$	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	${ }^{126.905}$	${ }^{131.29}$
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46		48	49			52	53	54
132.905	${ }^{137.327}$		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	20.59	204.383	207.19	208.980	(210)	(210)	${ }^{(222)}$
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	${ }_{80}{ }^{\text {d }}$	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	${ }^{(294)}$
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$ 57	$\begin{gathered} 140.115 \\ \text { Ce } \end{gathered}$	$\begin{gathered} 140.908 \\ \mathbf{P r}_{59} \end{gathered}$	$\begin{gathered} 144.24 \\ \text { Nd } \end{gathered}$ 60	(145) ${ }_{61} \mathbf{P m}$	$\begin{gathered} 150.36 \\ \text { Sm } \end{gathered}$	$\begin{gathered} 151.965 \\ \text { Eu } \end{gathered}$ 63	157.25 Gd 64	$\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$	$\begin{gathered} 162.50 \\ \mathbf{D y} \end{gathered}$	$\begin{gathered} 164.930 \\ \text { Ho } \end{gathered}$	$\begin{gathered} 167.26 \\ \text { Er } \end{gathered}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \end{gathered}$ 69	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \end{gathered}$
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré (updated 2016)

