\qquad
\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 6 pages of questions in addition to this cover page and a periodic table.
2) You have also been given a 6 page Spectroscopy Data Package. Please do not write on the Spectroscopy data Package! If you need scrap paper, use the back of any page of the test. On questions with spectra, you may also do rough work directly on the spectra.
3) You may use a molecular model kit and ruler. You may not have any papers or other written materials in your model kit.
4) Electronic devices (including calculators) are not allowed for this test.
5) If your work is not legible, it will be given a mark of zero.
6) For full credit, explanations must be complete. In many cases, complete explanations include drawing relevant structures. If delocalization of electrons is invoked, the relevant resonance structures must be drawn.
7) Marks will be deducted for incorrect information added to an otherwise correct answer.
8) You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 5:00pm Mountain Time on Wednesday, November $6^{\text {th }}$, 2019 (the day after the test). I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 50$ on this exam and removal of the "overwrite midterm mark with final exam mark" option for my grade in this course; the maximum punishment would include expulsion from this university.

Signature: \qquad
Course: CHEM 2600 (Organic Chemistry II)
Semester: Fall 2019
The University of Lethbridge

Date: \qquad

Question Breakdown

Q1	$/ 8$
Q2	14
Q3	$/ 4$
Q4	$/ 8$
Q5	$/ 7$
Q6	$/ 11$
Q7	$/ 8$

Total	$/ 50$

NAME: \qquad Section: \qquad Student Number: \qquad

1. Consider the following reaction mixture:
[8 marks]

(a) Draw the major organic product obtained if the reaction proceeds according to an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Briefly explain why this isomer is obtained.
[4 marks]
(b) Draw the major organic product obtained if the reaction proceeds according to an E2 mechanism at high temperature. Briefly explain why this isomer is obtained.

NAME: \qquad
\qquad
\qquad
2. 5-Bromo-1,3-cyclopentadiene is a bad substrate for $\mathrm{S}_{\mathrm{N}} 1$ or E 1 reactions. Why?

For full credit, your answer must include the structure of 5-bromo-1,3-cyclopentadiene and any other relevant structures. If you need a hint, start drawing the mechanism for an $S_{N} 1$ or E1 reaction involving 5-bromo-1,3-cyclopentadiene.
3. For each of the following multi-step processes, draw the major organic product of each step in the appropriate box.
(a)

(b)

NAME: \qquad Section: \qquad Student Number: \qquad
4. Indicate whether or not you would expect to see a significant amount of reaction according to each mechanism type by circling 'yes' or 'no'. In the bottom row of each table, justify your answer by:

- For each 'yes', drawing the organic product(s) that will be observed.
- For each 'no', briefly explaining why you expect little-to-no reaction.
(a)

$\mathbf{S}_{\mathbf{N}} \boldsymbol{?} \boldsymbol{~}$ yes / no	SN2? yes / no	E1? yes / no	E2? yes / no

(b)

Sn1? yes / no	Sn2? yes / no	E1? yes / no	E2? yes / no

NAME: \qquad
\qquad Student Number:
5. A kinetic study of the reaction between an alkyl chloride (RCl) and a non-nucleophilic base (base) provided the following data:

$[R C l]\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)$	[base] $\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)$	Rate of reaction $\left(\frac{\mathrm{mol}}{\mathrm{L} \cdot \mathrm{s}}\right)$
1	1	10
1	2	20
2	4	80
4	4	160

(a) Write the rate law for this reaction. Include a numerical value and units for k . [4 marks] Clearly identify the order of each reactant.
(b) Did this reaction proceed via an $\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$, E1 or E2 mechanism? Explain your choice. It must be clear why all three alternative options were rejected.
[3 marks]
\qquad Section: \qquad Student Number:
6.
(a) Draw a reasonable mechanism for the following reaction.

(b) Briefly explain how you would use each of the following spectroscopic methods to determine whether or not this reaction had gone to completion.

NAME: \qquad
\qquad
\qquad
7. Draw a reasonable mechanism for the following reaction and draw the final product in the box provided. Clearly show any relevant stereochemistry of the final product.

$$
\xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{H}^{+}}
$$

NAME: \qquad Section: \qquad Student Number: \qquad

1	CHEM 1000 Standard Periodic Table													15	16	17	18
1.0079	2											13	14				4.0026
H																	He
1																	
${ }^{6.941}$	${ }_{\text {9e }} 9.0122$	3	4	5	6	7	8	9	10	11	12	10.811 \mathbf{B}	${ }_{6}^{12.011}$	$\stackrel{14.0067}{\text { N }}$	${ }_{0}^{15.9994}$	$\underset{\text { F }}{18.998}$	$\underset{\substack{20.1997 \\ \mathrm{Ne}}}{ }$
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg											Al	Si	P	S	Cl	Ar
11	12											13	14	15	16	17	18
39.0983	40.078	44.9559	${ }^{47.88}$	50.9415	51.9961	54.9380	55.847	58.9332	58.693	${ }^{63.546}$	65.39	69.723	${ }^{72.61}$	${ }^{74.9216}$	78.96	79.904	83.80
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34		
${ }^{85.4678}$	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	${ }^{126.905}$	${ }^{131.29}$
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46		48	49			52	53	54
132.905	${ }^{137.327}$		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	20.59	204.383	207.19	208.980	(210)	(210)	${ }^{(222)}$
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	${ }_{80}{ }^{\text {d }}$	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	${ }^{(294)}$
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118

$\begin{gathered} 138.906 \\ \mathbf{L a} \end{gathered}$ 57	$\begin{gathered} 140.115 \\ \text { Ce } \end{gathered}$	$\begin{gathered} 140.908 \\ \mathbf{P r}_{59} \end{gathered}$	$\begin{gathered} 144.24 \\ \text { Nd } \end{gathered}$ 60	(145) ${ }_{61} \mathbf{P m}$	$\begin{gathered} 150.36 \\ \text { Sm } \end{gathered}$	$\begin{gathered} 151.965 \\ \text { Eu } \end{gathered}$ 63	157.25 Gd 64	$\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$	$\begin{gathered} 162.50 \\ \mathbf{D y} \end{gathered}$	$\begin{gathered} 164.930 \\ \text { Ho } \end{gathered}$	$\begin{gathered} 167.26 \\ \text { Er } \end{gathered}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \end{gathered}$ 69	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \end{gathered}$
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré (updated 2016)

