NAME:	Section: Student Number:
Spring 2019	Chemistry 2600 Midterm 2/ 65 marks
INSTRUCTIONS: 1	Please read over the test carefully before beginning. You should have 9 pages
	of questions in addition to this cover page and a periodic table.
2	You have also been given a 6 page Spectroscopy Data Package.
	PLEASE DO NOT WRITE ON THE SPECTROSCOPY DATA PACKAGE!
	If you need scrap paper, use the back of any page of the test. On questions
2	with spectra, you may also do rough work directly on the spectra.
3	You may use a molecular model kit and ruler. You may not have any papers or other written materials in your model kit.
$\it \Delta$	Electronic devices (including calculators) are <u>not</u> allowed for this test.
) If your work is not legible, it will be given a mark of zero.
) For full credit, explanations must be complete. In many cases, complete
	explanations include drawing relevant structures. If delocalization of
	electrons is invoked, the relevant resonance structures must be drawn.
7) Marks will be deducted for incorrect information added to an otherwise
	correct answer.
8	You have 2 hours to complete this test.
Confidentiality Agree	
	in any other way divulge) the contents of this exam until after 8:00pm Mountain
	rch 18 th , 2019. I understand that breaking this agreement would constitute a serious offense with serious consequences. The minimum punishment would
	nis exam and removal of the "overwrite midterm mark with final exam mark"
	this course; the maximum punishment would include expulsion from this
university.	tuns course, the maximum punishment would metade expulsion from this
Signature:	Date:
Course: CHEM 2600 (C	Organic Chemistry II)
Semester: Spring 2019	
The University of Lethb	oridge

Question Breakdown

Q1	/ 6
Q2	/ 6
Q3	/ 5
Q4	/7
Q5	/ 8
Q6	/7
Q7	/7
Q8	/ 10
Q9	/ 9

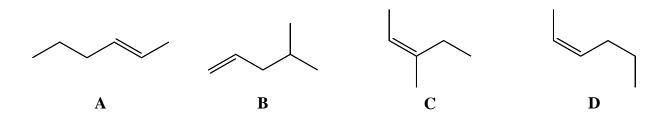
Total	/ 65
-------	------

1.

A

Rank the following substrates in order from slowest E1 reaction rate to fastest. (a)

[6 marks] [2 marks]


D

_____ fastest slowest _

Rank the following substrates in order from slowest S_N2 reaction rate to fastest. [2 marks] (b)

slowest _____ fastest

Rank the following alkenes from least to most stable. [2 marks] (c)

least stable _____ most stable

2. Draw the organic product for each of the following reactions:

[6 marks]

(a)

Swern oxidation:

(b)

(c)

NAME:	Saction:	Student Number:
NAME:	Section:	Student Number:

3. The *cis* isomer of 1-bromo-4-*tert*-butylcyclohexane undergoes E2 elimination ~1000 times faster than the trans isomer. Explain why the *cis* isomer reacts faster. [5 marks] *For full credit, your answer should include one or more diagrams.*

NAME:	Section:	Student Number:
TATVIL.	Section.	Student Number.

4. A kinetic study of the reaction between an alkyl bromide (RBr) and a non-nucleophilic base (base) provided the following data: [7 marks]

$[RBr] \left(\frac{mol}{L}\right)$	[base] $\binom{mol}{L}$	Rate of reaction $\left(\frac{mol}{L \cdot s}\right)$
1	1	6
1	2	6
2	4	12
3	4	18

(a) Write the rate law for this reaction. Include a numerical value and units for k. [4 marks] Clearly identify the order of each reactant.

(b) Did this reaction proceed via an S_N1 , S_N2 , E1 or E2 mechanism? Explain your choice. It must be clear why all three alternative options were rejected. [3 marks]

- 5. Indicate whether or not you would expect to see a significant amount of reaction according to each mechanism type by circling 'yes' or 'no'. In the bottom row of each table, justify your answer by:

 [8 marks]
 - For each 'yes', drawing the organic product(s) that will be observed.
 - For each 'no', briefly explaining why you expect little-to-no reaction.

(a)
$$\vdots$$
 \vdots \vdots \vdots \mapsto CH_3

S _N 1? yes / no	S _N 2? yes / no	E1? yes / no	E2? yes / no

(b)
$$\ddot{B}_{r}$$
: + $H_2\ddot{O}$:

S _N 1?	S _N 2?	E1?	E2?
yes / no	S_N2 ? yes / no	yes / no	yes / no

27.25	~ .	~	
NAME:	Section:	Student Number:	
1 17 HVIE.		Bradent Framoer.	

6. Propose a reasonable reaction mechanism for the following reaction:

[7 marks]

NAME:	Saction:	Student Number:
NAME:	Section:	Student Number:

7. Propose a reasonable reaction mechanism for the following reaction:

[7 marks]

NAME:	Section:	Student Number:
TATVIL.	Section.	Student Number.

8. The following reaction gives 5 different products (not including stereoisomers): 2 different substitution products and 3 different elimination products. [10 marks]

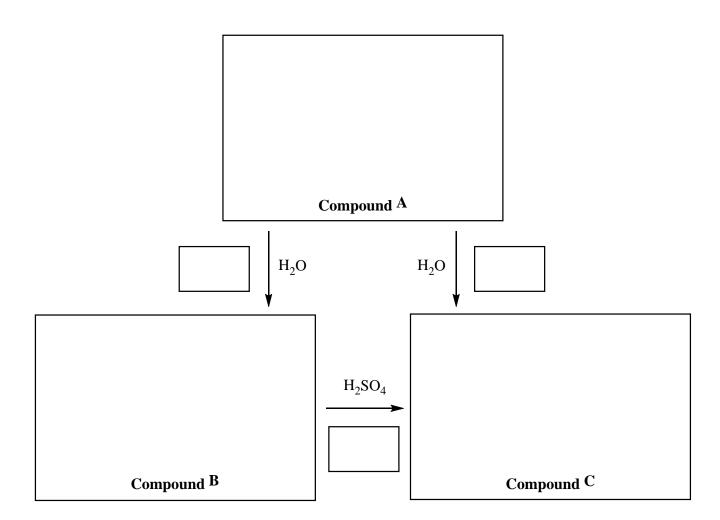
(a) Draw the two substitution products.

[4 marks]

(b) Draw the three elimination products.

[6 marks]

NAME:	Section:	Student Number:	
1 1/A1V1L	5cction	Student Number.	


- 9. ¹H NMR analysis of Compound A (C_4H_9Cl) gives a spectrum with one singlet at 1.6 ppm. When Compound A is reacted with water, a mixture of two products is formed:
 - ¹H NMR analysis of Compound B gives two signals: 1.3 ppm and 2.0 ppm
 - ¹H NMR analysis of Compound C gives two signals: 1.7 ppm and 4.7 ppm.

If Compound B is treated with concentrated sulfuric acid, Compound C is produced.

Complete the diagram below by

- drawing the structures of Compounds A, B and C in the boxes provided, and
- identifying each reaction as proceeding via S_N1, S_N2, E1 or E2 mechanism in the boxes provided next to the arrows.

[9 marks]

NAME:	Section:	Student Number:

1	CHEM 1000 Standard Periodic Table												18				
1.0079															4.0026		
H																	He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	C	N	O	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	_	_	_	_	_	_	•	4.0			Al	Si	P	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118

138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré (updated 2016)