ът			
1.1	am	ρ	٠
ΤN	am	c	٠

Chemistry 2600 Final Exam (Version A) April 19th, 2008

INSTRUCTIONS

- 1) Read the exam carefully before beginning. There are 9 questions on pages 2 to 10 followed by a periodic table and a blank page for rough work. You are also provided with an NMR Data Sheet (as posted on the class website). Please ensure that you have a complete exam. If not, let an invigilator know immediately. All pages must be submitted.
- 2) You are allowed to bring one index card (maximum size 3"x5") into the exam with you as a "cheat sheet". This card must be submitted with your exam.
- 3) You are allowed to bring a ruler and a molecular model kit.
- 4) No electronic devices of any kind (including calculators) are permitted.
- 5) If your work is not legible, it will be given a mark of zero.
- 6) Marks will be deducted for incorrect information added to an otherwise correct answer.
- 7) When drawing molecules, clearly show any relevant stereochemistry. If a mixture of diastereomers is produced, draw both/all of them.
- 8) If you think that you see another student cheating, write a note on your exam paper and raise your hand to show an invigilator so that we can investigate the situation.
- 9) DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO BEGIN. Beginning prematurely will result in removal of your exam paper and a mark of 0.
- 10) You have **3 hours** to complete this exam. Nobody may leave the exam room during the first hour or the last 15 minutes of the exam.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam with or in the presence of any CHEM 2600 student who has not yet written their final exam. (The last official timeslot ends at 5pm on Monday, April 21st, 2008.)

Signature:

Date:

Course: CHEM 2600 (Organic Chemistry II) Semester: Spring 2008 The University of Lethbridge

Q	Mark
1	/ 8
2	/ 4
3	/ 4
4	/ 3
5	/ 15

Q	Mark
6	/ 15
7	/ 10
8	/ 20
9	/1

Total	/ 80
-------	------

Name:			

1.

[8 marks]

- (a) Draw the major organic product of the reaction between 1,3-dipropylbenzene and acetyl chloride (CH₃COCl) in the presence of aluminum chloride.
- (b) With reference to the reaction mechanism, explain the regioselectivity of this reaction.

3. Explain how you could use spectroscopy to differentiate between this pair of isomers. Your answer should make reference to at least <u>two</u> types of spectroscopy (IR, ¹H NMR or ¹³C NMR). Note that you are <u>not</u> being asked to completely describe each spectrum. You are being asked to point out key differences between spectra of the two isomers. Be specific. [4 marks]

Linezolid is an antibacterial drug marketed by Pharmacia as Zyvox[®]. Fill in the blanks in the last few steps of the synthesis of linezolid (shown below). [3 marks]
Some reaction conditions have been simplified for clarity.

5. One synthesis of celecoxib (an anti-inflammatory marketed by Pfizer as Celebrex[®]) is shown below. [15 marks]

(a) Draw the mechanism for Step 1 of this synthesis.

Name:			

- 5. *continued*
- (b) Draw the mechanism for Step 2 of this synthesis. *Please abbreviate* $C_6H_4SO_2NH_2$ as Ar.

- 6. Choose any <u>three</u> of the molecules below and propose a synthesis of each. [15 marks]
 - Your organic reactants must be stable compounds that contain no more than five carbon atoms. They may be hydrocarbons, alkyl halides or alcohols and may contain C=C or C=C bonds. You are also allowed to use benzene, bromobenzene or phenol.
 - If you wish to use an organic reactant (including Grignard reagent) that does not meet these requirements, you must show how to make it from starting materials that do.
 - You may use any inorganic reagents, acids, bases, catalysts, etc.
 - Acids, bases, catalysts, etc. do not need to meet the "organic reactant" requirements if the organic part will not be present in the final product.
 - Clearly indicate stereochemistry of reaction products where appropriate. Assume that all stereochemistry shown is relative and that you are to make racemic product.
 - You are not required to show mechanisms for this question.
 - If you work out syntheses for more than three of the molecules, clearly indicate which three you want marked by circling those compounds. Otherwise, I will mark the first three syntheses given.
 - If you run out of space on this page, continue your work on the next page.

Student Number: _____

6. *continued*

- 7. Compound "A" has the molecular formula C_5H_6 and has a ¹³C NMR with three signals. It dimerizes readily. When treated with a strong base, anion "A" is generated which gives only one signal on its ¹³C NMR. [10 marks]
- (a) Draw compound "A".
- (b) Draw anion "A" and explain why it only gives one signal on the NMR.
- (c) Draw the dimer of "A".
- (d) Draw the product(s) formed when "A" reacts with 1 equivalent of HCl.
- (e) Draw the product(s) formed when "A" reacts with 1 equivalent of Br_2 in water.

ът		
N	ame	٠.
ΤA	ann	∕•

8. The following two pages contain spectra and the molecular formula for Unknown X. Identify Unknown X based on this information. Use this page to explain your logic. On the NMR spectra themselves, assign as many peaks as you can by numbering the peaks from left to right, drawing Unknown X and labeling each carbon/hydrogen with the appropriate peak number. *You may find it clearer to use numbers for one NMR and letters for the other*. Also, label any important peaks on the IR. **[20 marks]**

9. What was the most interesting and/or useful thing you learned in CHEM 2600? [1 mark]

...AND THAT'S ALL FOR CHEM 2600. HAVE A GREAT SUMMER!

DATA SHEET/SCRAP PAPER

Chem 2000 Standard Periodic Table

1	Chem 2000 Standard Periodic Table												18				
1.0079]												4.0026				
н																	He
1	2	_										13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	•		_		_	0	•	4.0			Al	Si	Р	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88 9059	01 224	00.004													
		00.7057	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	92.9064 Nb	95.94 Mo	(98) Tc	101.07 Ru	102.906 Rh	106.42 Pd	107.868 Ag	112.411 Cd	114.82 In	118.710 Sn	121.757 Sb	127.60 Te	126.905 I	131.29 Xe
Rb 37	Sr 38	Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	(98) Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.411 Cd 48	114.82 In 49	118.710 Sn 50	121.757 Sb 51	127.60 Te 52	126.905 I 53	131.29 Xe 54
Rb 37 132.905	Sr 38 137.327	Y 39	40 178.49	92.9064 Nb 41 180.948	95.94 Mo 42 183.85	(98) Tc 43 186.207	101.07 Ru 44 190.2	102.906 Rh 45 192.22	106.42 Pd 46 195.08	107.868 Ag 47 196.967	112.411 Cd 48 200.59	114.82 In 49 204.383	118.710 Sn 50 207.19	121.757 Sb 51 208.980	127.60 Te 52 (210)	126.905 I 53 (210)	131.29 Xe 54 (222)
Rb 37 132.905 Cs	Sr 38 137.327 Ba	Y 39 La-Lu	40 178.49 Hf	92.9064 Nb 41 180.948 Ta	95.94 Mo 42 183.85 W	(98) Tc 43 186.207 Re	101.07 Ru 44 190.2 Os	102.906 Rh 45 192.22 Ir	106.42 Pd 46 195.08 Pt	107.868 Ag 47 196.967 Au	112.411 Cd 48 200.59 Hg	114.82 In 49 204.383 Tl	118.710 Sn 50 207.19 Pb	121.757 Sb 51 208.980 Bi	127.60 Te 52 (210) Po	126.905 I 53 (210) At	131.29 Xe 54 (222) Rn
Rb 37 132.905 Cs 55	Sr 38 137.327 Ba 56	Y 39 La-Lu	91.224 Zr 40 178.49 Hf 72	92.9064 Nb 41 180.948 Ta 73	95.94 Mo 42 183.85 W 74	(98) Tc 43 186.207 Re 75	101.07 Ru 44 190.2 Os 76	102.906 Rh 45 192.22 Ir 77	106.42 Pd 46 195.08 Pt 78	107.868 Ag 47 196.967 Au 79	112.411 Cd 48 200.59 Hg 80	114.82 In 49 204.383 Tl 81	118.710 Sn 50 207.19 Pb 82	121.757 Sb 51 208.980 Bi 83	127.60 Te 52 (210) Po 84	126.905 I 53 (210) At 85	131.29 Xe 54 (222) Rn 86
Rb 37 132.905 Cs 55 (223)	Sr 38 137.327 Ba 56 226.025	Y 39 La-Lu	J1.224 Zr 40 178.49 Hf 72 (261)	92.9064 Nb 41 180.948 Ta 73 (262)	95.94 Mo 42 183.85 W 74 (263)	(98) Tc 43 186.207 Re 75 (262)	101.07 Ru 44 190.2 Os 76 (265)	102.906 Rh 45 192.22 Ir 77 (266)	106.42 Pd 46 195.08 Pt 78 (281)	107.868 Ag 47 196.967 Au 79 (283)	112.411 Cd 48 200.59 Hg 80	114.82 In 49 204.383 Tl 81	118.710 Sn 50 207.19 Pb 82	121.757 Sb 51 208.980 Bi 83	127.60 Te 52 (210) Po 84	126.905 I 53 (210) At 85	131.29 Xe 54 (222) Rn 86
Rb 37 132.905 Cs 55 (223) Fr	Sr 38 137.327 Ba 56 226.025 Ra	Y 39 La-Lu Ac-Lr	91.224 Zr 40 178.49 Hf 72 (261) Rf	92.9064 Nb 41 180.948 Ta 73 (262) Db	95.94 Mo 42 183.85 W 74 (263) Sg	(98) Tc 43 186.207 Re 75 (262) Bh	101.07 Ru 44 190.2 Os 76 (265) Hs	102.906 Rh 45 192.22 Ir 77 (266) Mt	106.42 Pd 46 195.08 Pt 78 (281) Dt	107.868 Ag 47 196.967 Au 79 (283) Rg	112.411 Cd 48 200.59 Hg 80	114.82 In 49 204.383 Tl 81	118.710 Sn 50 207.19 Pb 82	121.757 Sb 51 208.980 Bi 83	127.60 Te 52 (210) Po 84	126.905 I 53 (210) At 85	131.29 Xe 54 (222) Rn 86
Rb 37 132.905 Cs 55 (223) Fr 87	Sr 38 137.327 Ba 56 226.025 Ra 88	Y 39 La-Lu Ac-Lr	91.224 Zr 40 178.49 Hf 72 (261) Rf 104	92.9064 Nb 41 180.948 Ta 73 (262) Db 105	95.94 Mo 42 183.85 W 74 (263) Sg 106	(98) Tc 43 186.207 Re 75 (262) Bh 107	101.07 Ru 44 190.2 Os 76 (265) Hs 108	102.906 Rh 45 192.22 Ir 77 (266) Mt 109	106.42 Pd 46 195.08 Pt 78 (281) Dt 110	107.868 Ag 47 196.967 Au 79 (283) Rg 111	112.411 Cd 48 200.59 Hg 80	114.82 In 49 204.383 Tl 81	118.710 Sn 50 207.19 Pb 82	121.757 Sb 51 208.980 Bi 83	127.60 Te 52 (210) Po 84	126.905 I 53 (210) At 85	131.29 Xe 54 (222) Rn 86

138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré