Chemistry 2600 Final Exam (Version A) April 22 ${ }^{\text {nd }}, 2009$

INSTRUCTIONS

1) Read the exam carefully before beginning. There are 11 questions on pages 2 to 11 followed by a periodic table and a blank page for rough work. You are also provided with an NMR Data Package and a page with pi MOs. Please ensure that you have a complete exam. If not, let an invigilator know immediately. All pages must be submitted.
2) You are allowed to bring one index card (maximum size 3 " $x 5$ ") into the exam with you as a "cheat sheet". This card must be submitted with your exam.
3) You are allowed to bring a ruler and a molecular model kit.
4) No electronic devices of any kind (including calculators) are permitted.
5) If your work is not legible, it will be given a mark of zero.
6) Marks will be deducted for incorrect information added to an otherwise correct answer.
7) When drawing molecules, clearly show any relevant stereochemistry. If a mixture of diastereomers is produced, draw both/all of them.
8) IF YOU USE RESONANCE ARGUMENTS AS PART OF YOUR REASONING, THEN DRAW THE RELEVANT STRUCTURES.
9) If you think that you see another student cheating, write a note on your exam paper and raise your hand to show an invigilator so that we can investigate the situation.

10) DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO BEGIN.

 Beginning prematurely will result in removal of your exam paper and a mark of 0 .11) You have $\mathbf{3}$ hours to complete this exam. Nobody may leave the exam room during the first hour or the last 15 minutes of the exam.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam with or in the presence of any CHEM 2600 student who has not yet written their final exam. (The last official exam timeslot ends at 5 pm on Saturday, April 25 ${ }^{\text {th }}$, 2009.)

Signature: \qquad Date: \qquad
Course: CHEM 2600 (Organic Chemistry II)
Semester: Spring 2009
The University of Lethbridge

\mathbf{Q}	Mark
1	$/ 10$
2	$/ 10$
3	$/ 4$
4	$/ 4$
5	$/ 2$
6	$/ 3$

\mathbf{Q}	Mark
7	$/ 4$
$\mathbf{8}$	$/ 5$
9	$/ 7$
10	$/ 15$
11	$/ 1$

Total $/ 65$
(a) Deduce the structure of the molecule, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$, that gives the following proton NMR (400 MHz) and IR spectra.
(b) Assign all signals on the proton NMR, and assign two meaningful IR bands.
(c) Measure the coupling constants for the signal at 6.55 ppm , and indicate what this information tells you about the structure of this molecule.

Name:
Student Number:

Name:
2. The 400 MHz proton NMR spectrum of 3-phenylbutanoic acid appears below. Assign all signals and account for the two signals between 2 and 3 ppm .

3. Identify whether each of the following molecules is aromatic, nonaromatic or antiaromatic in the planar conformation. If it is a factor in your decision, you must also indicate the number of electrons in the pi system.
[4 marks]
(a)

(b)

4. You are studying the following reaction. It gives only the product shown. Does this result mean that this reaction is stereospecific? If not, what experiment might you do to test whether it is stereospecific or not, and what other information might be useful? [4 marks]

Name: \qquad
5. Consider the following molecule:

When treated with 1 equivalent of H_{2} in the presence of Pd / C, what is the product? Briefly explain why reaction occurs at the site you have chosen.
6. A student proposed the following synthesis of acetaminophen:

Identify three problems with this synthetic route.
[3 marks]

Name: \qquad Student Number:
7. Clopidogrel (marketed as Plavix®) is an antithrombotic drug that inhibits platelet aggregation.
[4 marks]
(a) Fill in the blanks in the following synthesis of Plavix ${ }^{\circledR}$.
[3 marks]
Some reaction conditions have been simplified for clarity. You do not need to show mechanisms.

clopidogrel

(b) Which enantiomer of clopidogrel is shown in the diagram above?
[1 mark]

Name:
Student Number:
8. Showing the appropriate pi molecular orbitals, indicate whether the following reaction is thermally allowed. You may assume that the reaction involves the HOMO of the triene.
[5 marks]

(b) Come up with a rule, similar to the Huckel rule, that relates the number of pi electrons involved in a cycloaddition reaction to whether it is thermally allowed. You may name it after yourself if you wish.
9. When phenylmagnesium bromide is reacted with N, N-dimethylformamide (DMF), the final product (after work-up with aqueous acid) is benzaldehyde:

(a) Propose a mechanism for this reaction including the work-up.
(b) If methyl formate is used instead of DMF, a different product is obtained. Draw this product and explain why DMF gives benzaldehyde but methyl formate does not. [2 marks]

10. Choose any three of the molecules below and propose a synthesis of each. [15 marks]

- Your organic reactants must be stable compounds that contain no more than five carbon atoms. They may be hydrocarbons, alkyl halides or alcohols and may contain $\mathrm{C}=\mathrm{C}$ or $\mathrm{C} \equiv \mathrm{C}$ bonds. You are also allowed to use benzene, bromobenzene or phenol.
- If you wish to use an organic reactant (including Grignard reagent) that does not meet these requirements, you must show how to make it from starting materials that do.
- You may use any inorganic reagents, acids, bases, catalysts, etc.
- Acids, bases, catalysts, etc. do not need to meet the "organic reactant" requirements if the organic part will not be present in the final product.
- Clearly indicate stereochemistry of reaction products where appropriate. Assume that all stereochemistry shown is relative and that you are to make racemic product.
- You are not required to show mechanisms for this question.
- If you work out syntheses for more than three of the molecules, clearly indicate which three you want marked by circling those compounds. Otherwise, I will mark the first three syntheses given.
- If you run out of space on this page, continue your work on the next page.

10. continued
11. What was the most interesting and/or useful thing you learned in CHEM 2600? [1 mark]

DATA SHEET/SCRAP PAPER

Developed by Prof. R. T. Boeré

