NAME:	Section: <u>A</u> Student Number:
Fall 2012	Chemistry 4000 Midterm/ 56 marks
INSTRUCTIONS: 1) 2) 3) 4) 5) 6) 7) 8)	 Please read over the test carefully before beginning. You should have 7 pages of questions and a periodic table. Unless otherwise stated in the question, explain all of your answers fully. Use diagrams where appropriate. When invoking any argument based on resonance, you must draw all relevant resonance structures. ALL structures must be drawn showing lone pairs, non-zero formal charges and reasonable bond angles – regardless of whether they are expanded, condensed or line-bond. Marks will be deducted for poorly drawn structures. Marks will be deducted for incorrect information added to an otherwise correct answer. If your work is not legible, it will be given a mark of zero. Calculators are not allowed. You are not permitted to have any electronic devices with you during the exam unless authorized by the instructor. You may use a molecular model kit. You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 8:00pm Mountain Time on Monday, October 29th, 2012. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/56 on this exam; the maximum punishment would include expulsion from this university.

Signature:

Date:

Course: CHEM 4000A (Medicinal Chemistry) Semester: Fall 2012 The University of Lethbridge

Ouestion Breakdown

Q1	/ 7
Q2	/ 4
Q3	/ 4
Q4	/ 6
Q5	/ 6
Q6	/ 6
Q7	/ 8
Q8	/ 15

/ 56 Total

NAMI	E: Section:A Student Number:	
1.	You wish to perform the following reaction:	[7 marks]
	$ \begin{array}{c} & & \\ & & $	
(a)	Why can you not use an S _N 1 approach?	[2 marks]

(c) How would you do it? Include specific groups to replace X and Y, and identify any other necessary reagents. [3 marks]

(a) What is meant by the term "umpolung"?

Why can you not use an $S_N 2$ approach?

(b)

2.

(b) Give an example of an umpoled synthon, and indicate what feature(s) make it umpoled.

[3 marks]

[4 marks]

[1 mark]

[2 marks]

NAME:	Section: A	Student Number:	

Explain why an a³ synthon is usually a better choice than a d³ synthon. [4 marks]
 Your answer should include an example of each.

4. The first synthesis we worked through in problem set was that of rofecoxib (Vioxx[®]). One of the key disconnections used in one of the syntheses is shown below (the thick dark line).

There are two possible pairs of synthons generated by this disconnection.[6 marks](a)Identify each pair of synthons (clearly indicating which side of the disconnection corresponds to each synthon).[4 marks]

(b) Which of the pairs of synthons is preferable? Why?

[2 marks]

(b)

5. Consider the following sequence of reactions. There is no work-up done between reactions.

[6 marks]

Draw the product of each step in the appropriate box. (a) What was the purpose of the -CN group?

[3 marks] [3 marks]

6. Use an argument based on hard/soft principles to explain why NaH and LiAlH₄ react differently with acetone: [6 marks]

Your answer should include a mechanism for each of the reactions shown above.

Propose a reasonable mechanism for this reaction.

NAME:_____

(a)

8. How would you make each of the molecules below?

[15 marks]

Your answers should take the form of a retrosynthetic analysis followed by chemical equations for the reactions in the synthesis itself. Show all required reagents, and number steps within a reaction if order of addition is important.

You may use any reagents that you could reasonably expect to be commercially available <u>and</u> that contain no more than 6 carbon atoms. (Exception: Reagents may contain one or more benzene rings in addition to the 6 carbon limit.)

If you are suggesting a multi-step synthesis, write an equation for each step.

[5 marks]

Section: <u>A</u> Student Number:

8. *continued*...

[10 marks]

1			CH	EM 1()00 Sta	andaro	d Perio	odic Ta	able								18
1.0079																	4.0026
H																	He
1	2											13	14	15	16	17	2
6.941	9.0122											10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	_	_	_	_	_	_	_				Al	Si	Р	S	Cl	Ar
11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(261)	(262)	(263)	(262)	(265)	(266)	(281)	(283)							
En	Do	Ac-Lr	Df	Dh	Sa	Rh	He	Mt	Df	Rσ							
гг	Ка	THE LI	1/1	D 0	52	D 11	110	1111	D_{i}	116							
87	K a 88	ine Er	104	105	106	107	108	109	110	111							

138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Developed by Prof. R. T. Boeré