NAME:	Section: A Student Number:
Fall 2017	Chemistry 4000 Midterm/ 40 marks
INSTRUCTIONS: 1	 Please read over the test carefully before beginning. You should have 6 pages of questions and a periodic table. Unless otherwise stated in the question, explain all of your answers fully. Use diagrams where appropriate. When invoking any argument based on resonance, you must draw all relevant resonance structures. ALL structures must be drawn showing lone pairs, non-zero formal charges and reasonable bond angles – regardless of whether they are expanded, condensed or line-bond. Marks will be deducted for poorly drawn structures. Marks will be deducted for incorrect information added to an otherwise correct answer. If your work is not legible, it will be given a mark of zero. Calculators are not allowed. You are not permitted to have any electronic devices with you during the exam unless authorized by the instructor. You may use a molecular model kit. You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 3:00pm Mountain Time on Thursday, November 2nd, 2017. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of 0/40 on this exam; the maximum punishment would include expulsion from this university.

Signature: ____

Date: _____

Course: CHEM 4000A (Medicinal Chemistry) Semester: Fall 2017 The University of Lethbridge

Question Breakdown

Q1	/ 5
Q2	/ 3
Q3	/ 4
Q4	/ 4
Q5	/ 6
Q6	/ 8
Q7	/ 10

Total	/ 40
-------	------

NAME:	Section: A	Student Number:

- 1. Consider the three main types of acceptor synthons: a^1 , a^2 and a^3 . [5 marks]
- (a) Give an example of each of these types of synthons. Your example set should clearly illustrate what the numbers refer to and what an acceptor synthon is. [3 marks]

(b) There is one more key difference between the a^2 synthon and the other two acceptor synthons listed above. What is this difference, and how might it affect choice of synthon? [2 marks]

2. What is an auxiliary functional group? Give an example of a reaction for which an auxiliary functional group might be useful. What is the purpose of the auxiliary functional group in this particular reaction? [3 marks]

3. How could you use a Suzuki cross-coupling reaction to make the following molecule?

[4 marks]

Clearly identify all necessary reactants (organic and inorganic) and any relevant reaction conditions.

You do <u>**not**</u> need to show how your reactants would be prepared.

You do **<u>not</u>** need to draw a mechanism for this reaction.

4. When we protonate an ester, we always protonate the carbonyl oxygen (=O) not the oxygen of the alkoxy group. Why? [4 marks]

5. Diethylzinc (shown below) is a popular, if pyrophoric, source of nucleophilic carbon. [6 marks]

(a) Would you expect diethylzinc to be a hard nucleophile or a soft nucleophile? Explain. [2 marks]

(b) Draw an electrophile with a harder electrophilic site and a softer electrophilic site. Clearly identify the two sites and rationalize why one is harder/softer than the other. [3 marks] Organic electrophiles only, please! ©

(c)Draw the product formed when your electrophile reacts with diethylzinc.[1 mark]You do <u>not</u> need to include a mechanism for this reaction.[1 mark]

6. When I was putting together your Mechanistic Assignment, I came across the following "mechanisms" on somebody's ResearchGate page. They made me very sad. [8 marks]

(a) Identify three things that are wrong with these "mechanisms". Explain each. [3 marks]
 The actual reactions are not problematic; the reactants and products are correct.

- 6. *continued*...
- (b) Fix the mechanisms so that I don't have to be sad anymore! Draw a proper mechanism for each of these two reactions. You may assume excess R_2NH_2 for the second reaction. [5 marks]

NAME:

7. How would you make the molecule below?

[10 marks]

Your answer should take the form of a retrosynthetic analysis followed by chemical equations for the reactions in the synthesis itself. Write an equation for each reaction. Show all required reagents, and number steps within a reaction if order of addition is important.

You may use any reactants that you could reasonably expect to be commercially available <u>and</u> that contain no more than 6 carbon atoms. (Exception: Reagents may contain one or more benzene rings in addition to the 6 carbon limit.)

You do <u>not</u> need to control absolute stereochemistry; a synthesis of a racemic mixture will get full credit.

If you are not sure how to control the relative stereochemistry, propose a synthesis of

1	Chem 1000 Standard Periodic Table											18					
1.0079		[·												4.0026			
H	_																He
1	2											13	14	15	16	17	2
6.941	9.0122]										10.811	12.011	14.0067	15.9994	18.9984	20.1797
Li	Be											В	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
22.9898	24.3050											26.9815	28.0855	30.9738	32.066	35.4527	39.948
Na	Mg	2	4	_	(-	0	Δ	10	11	10	Al	Si	Р	S	Cl	Ar
11	12	3	4	5	0	1	δ	9	10	11	12	13	14	15	16	17	18
39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9380	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132.905	137.327		178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	(210)	(210)	(222)
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226.025		(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
									-					-			•
		138.906	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	1
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	1
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
		227.028	232.038	231.036	238.029	237.048	(240)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	1
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	1
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	l

Developed by Prof. R. T. Boeré (updated 2016)