\qquad

INSTRUCTIONS: 1) Please read over the test carefully before beginning. You should have 6 pages of questions and a periodic table.
2) Unless otherwise stated in the question, explain all of your answers fully. Use diagrams where appropriate. When invoking any argument based on resonance, you must draw all relevant resonance structures.
3) ALL structures must be drawn showing lone pairs, non-zero formal charges and reasonable bond angles - regardless of whether they are expanded, condensed or line-bond. Marks will be deducted for poorly drawn structures.
4) Marks will be deducted for incorrect information added to an otherwise correct answer.
5) If your work is not legible, it will be given a mark of zero.
6) Calculators are not allowed. You are not permitted to have any electronic devices with you during the exam unless authorized by the instructor.
7) You may use a molecular model kit.
8) You have 2 hours to complete this test.

Confidentiality Agreement:

I agree not to discuss (or in any other way divulge) the contents of this exam until after 3:00pm Mountain Time on Thursday, November $2^{\text {nd }}, 2017$. I understand that breaking this agreement would constitute academic misconduct, a serious offense with serious consequences. The minimum punishment would be a mark of $0 / 40$ on this exam; the maximum punishment would include expulsion from this university.

Signature:
Course: CHEM 4000A (Medicinal Chemistry)
Semester: Fall 2017
The University of Lethbridge

Date: \qquad

Question Breakdown

Q1	15
Q2	13
Q3	14
Q4	14
Q5	16
Q6	18
Q7	110

Total	$/ 40$

\qquad
\qquad

1. Consider the three main types of acceptor synthons: a^{1}, a^{2} and a^{3}.
(a) Give an example of each of these types of synthons. Your example set should clearly illustrate what the numbers refer to and what an acceptor synthon is.
(b) There is one more key difference between the a^{2} synthon and the other two acceptor synthons listed above. What is this difference, and how might it affect choice of synthon?
2. What is an auxiliary functional group? Give an example of a reaction for which an auxiliary functional group might be useful. What is the purpose of the auxiliary functional group in this particular reaction?
\qquad
\qquad
3. How could you use a Suzuki cross-coupling reaction to make the following molecule?
[4 marks]

Clearly identify all necessary reactants (organic and inorganic) and any relevant reaction conditions.
You do not need to show how your reactants would be prepared.
You do not need to draw a mechanism for this reaction.
4. When we protonate an ester, we always protonate the carbonyl oxygen $(=\mathrm{O})$ not the oxygen of the alkoxy group. Why?
\qquad
\qquad
5. Diethylzinc (shown below) is a popular, if pyrophoric, source of nucleophilic carbon. [6 marks]

(a) Would you expect diethylzinc to be a hard nucleophile or a soft nucleophile? Explain. [2 marks]
(b) Draw an electrophile with a harder electrophilic site and a softer electrophilic site. Clearly identify the two sites and rationalize why one is harder/softer than the other.
[3 marks] Organic electrophiles only, please! ©
(c) Draw the product formed when your electrophile reacts with diethylzinc.
\qquad
\qquad
6. When I was putting together your Mechanistic Assignment, I came across the following "mechanisms" on somebody’s ResearchGate page. They made me very sad.

(a) Identify three things that are wrong with these "mechanisms". Explain each.

NAME: \qquad
6. continued...
(b) Fix the mechanisms so that I don't have to be sad anymore! Draw a proper mechanism for each of these two reactions. You may assume excess $\mathrm{R}_{2} \mathrm{NH}_{2}$ for the second reaction. [5 marks]
\qquad
\qquad
7. How would you make the molecule below?
[10 marks]
Your answer should take the form of a retrosynthetic analysis followed by chemical equations for the reactions in the synthesis itself. Write an equation for each reaction. Show all required reagents, and number steps within a reaction if order of addition is important.
You may use any reactants that you could reasonably expect to be commercially available and that contain no more than 6 carbon atoms. (Exception: Reagents may contain one or more benzene rings in addition to the 6 carbon limit.)
You do not need to control absolute stereochemistry; a synthesis of a racemic mixture will get full credit.
If you are not sure how to control the relative stereochemistry, propose a synthesis of

\qquad

1	Chem 1000 Standard Periodic Table																18
$\begin{gathered} 1.0079 \\ \mathbf{H} \end{gathered}$																	$\begin{gathered} 4.0026 \\ \mathbf{H e} \end{gathered}$
1	2											13	14	15	16	17	2
$\begin{array}{r} 6.941 \\ { }_{3}^{6} \mathbf{L i} \end{array}$	$\begin{gathered} 9.0122 \\ \mathbf{B e} \end{gathered}$ 4											$\begin{gathered} 10.811 \\ { }_{5} \mathbf{B} \end{gathered}$	$\begin{gathered} 12.011 \\ \\ \\ \hline 6 \end{gathered}$	$\begin{aligned} & 14.0067 \\ & \mathbf{N} \\ & { }_{7} \end{aligned}$	$\begin{aligned} & 15.9994 \\ & \mathbf{O} \\ & 8 \end{aligned}$	$\begin{gathered} 18.9984 \\ \mathbf{F} \\ 9 \end{gathered}$	$\begin{aligned} & \hline 20.1797 \\ & \mathbf{N e} \\ & 10 \end{aligned}$
$\begin{gathered} 22.9898 \\ \mathrm{Na} \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & 24.3050 \\ & \mathbf{M g} \\ & 12 \end{aligned}$	3	4	5	6	7	8	9	10	11	12	26.9815 Al 13		$\begin{aligned} & \begin{array}{l} 30.9738 \\ \mathbf{P} \\ 15 \end{array}, ~ \end{aligned}$	$\begin{aligned} & 32.066 \\ & \mathbf{S} \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 35.4527 \\ \text { Cl } \\ 17 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 39.948 \\ \mathbf{A r} \\ 18 \end{array}$
$\begin{gathered} 39.0983 \\ \mathbf{K} \\ 19 \end{gathered}$	$\begin{gathered} 40.078 \\ \mathbf{C a} \\ 20 \end{gathered}$	$\begin{aligned} & \hline 44.9559 \\ & \text { Sc } \\ & 21 \end{aligned}$	$\begin{array}{r} 47.88 \\ { }_{22} \mathbf{T i} \end{array}$	$\begin{aligned} & { }_{23}^{50.9415} \mathbf{V} \\ & \end{aligned}$	$\begin{aligned} & 51.9961 \\ & \mathbf{C r} \\ & 24 \end{aligned}$	$\begin{aligned} & 54.9380 \\ & \mathbf{M n} \\ & 25 \end{aligned}$	$\begin{gathered} 55.847 \\ \text { Fe } \\ 26 \end{gathered}$	$\begin{gathered} 58.9332 \\ { }_{27} \mathbf{C o} \end{gathered}$	$\begin{gathered} 58.693 \\ \mathbf{N i} \\ 28 \end{gathered}$	$\begin{gathered} 63.546 \\ \mathbf{C u} \\ 29 \end{gathered}$	$\begin{gathered} 65.39 \\ \mathbf{Z n} \\ 30 \end{gathered}$	$\begin{gathered} 69.723 \\ \mathbf{G a} \\ 31 \end{gathered}$	$\begin{array}{r} 72.61 \\ \text { Ge } \\ 32 \end{array}$	$\begin{gathered} 74.9216 \\ \text { As } \\ 33 \end{gathered}$	$\begin{array}{r} 78.96 \\ \text { Se } \\ 34 \end{array}$	$\begin{gathered} 79.904 \\ \mathbf{B r} \\ 35 \end{gathered}$	$\begin{gathered} 83.80 \\ \mathbf{K r} \mathbf{r} \\ 36 \end{gathered}$
$\begin{gathered} 85.4678 \\ \mathbf{R b} \\ 37 \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \end{gathered}$	$\begin{gathered} 88.9059 \\ \mathbf{Y} \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathbf{Z r} \\ 40 \end{gathered}$	$\begin{gathered} 92.9064 \\ \mathbf{N b} \\ 41 \end{gathered}$	$\begin{gathered} 95.94 \\ \mathbf{M o} \\ 42 \end{gathered}$	$\begin{gathered} { }^{(98)} \\ \mathbf{T c} \\ \hline \end{gathered}$	$\begin{gathered} 101.07 \\ \mathbf{R u} \\ 44 \end{gathered}$	$\begin{aligned} & 102.906 \\ & \mathbf{R h} \\ & 45 \end{aligned}$	$\begin{gathered} 106.42 \\ \text { Pd } \\ 46 \end{gathered}$	$\begin{array}{\|c\|} \hline 107.868 \\ \hline \end{array}$ Ag	$\begin{gathered} 112.411 \\ \text { Cd } \\ 48 \end{gathered}$	$\begin{gathered} 114.82 \\ \text { In } \\ 49 \end{gathered}$	$\begin{gathered} 118.710 \\ \text { Sn } \\ 50 \end{gathered}$	$\begin{gathered} 121.757 \\ \mathbf{S b} \\ 51 \end{gathered}$	127.60 Te 52	$\begin{gathered} 126.905 \\ \mathbf{I} \\ 53 \end{gathered}$	$\begin{gathered} 131.29 \\ \mathbf{X e} \\ 54 \end{gathered}$
$\begin{gathered} 132.905 \\ \text { Cs } \\ 55 \end{gathered}$	$\begin{gathered} 137.327 \\ \text { Ba } \\ 56 \end{gathered}$	La-Lu	$\begin{gathered} 178.49 \\ \text { Hf } \\ 72 \end{gathered}$	$\begin{gathered} 180.948 \\ \mathbf{T a} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ \mathbf{W} \\ 74 \end{gathered}$	$\begin{gathered} 186.207 \\ \mathbf{R e} \\ 75 \end{gathered}$	$\begin{array}{r} 190.2 \\ \text { Os } \\ 76 \end{array}$	$\begin{gathered} 192.22 \\ \text { Ir } \\ 77 \end{gathered}$	$\begin{gathered} 195.08 \\ \mathbf{P t} \\ 78 \end{gathered}$	$\begin{gathered} 196.967 \\ \mathbf{A u} \\ 79 \end{gathered}$	$\begin{gathered} 200.59 \\ \mathbf{H g} \\ 80 \end{gathered}$	$\begin{array}{\|c\|} \hline 204.383 \\ \mathbf{T l} \\ \hline 81 \\ \hline \end{array}$	$\begin{gathered} 207.19 \\ \mathbf{P b} \\ 82 \end{gathered}$	$\begin{gathered} 208.980 \\ \mathbf{B i} \\ 83 \\ \hline \end{gathered}$	$\begin{aligned} & (210) \\ & \mathbf{P o} \\ & 84 \end{aligned}$	$\begin{aligned} & \text { (210) } \\ & \mathbf{A t} \\ & 85 \end{aligned}$	$\begin{gathered} (222) \\ \mathbf{R n} \\ 86 \end{gathered}$
$\begin{aligned} & \hline(223) \\ & \text { Fr } \\ & 87 \\ & \hline \end{aligned}$	$\begin{aligned} & 226.025 \\ & \mathbf{R a} \\ & 88 \\ & \hline \end{aligned}$	Ac-Lr	$\begin{gathered} \hline(265) \\ \mathbf{R f} \\ 104 \\ \hline \end{gathered}$	$\begin{gathered} \hline(268) \\ \text { Db } \\ 105 \\ \hline \end{gathered}$	$\begin{gathered} \hline(271) \\ \mathrm{Sg} \\ 106 \\ \hline \end{gathered}$	$\begin{gathered} \hline(270) \\ \mathbf{B h} \\ 107 \\ \hline \end{gathered}$	$\begin{gathered} \text { (277) } \\ \mathbf{H s} \\ 108 \\ \hline \end{gathered}$	$\begin{gathered} \hline(276) \\ \mathbf{M t} \\ 109 \\ \hline \end{gathered}$	$\begin{array}{r} \text { (281) } \\ \text { Ds } \\ 110 \\ \hline \end{array}$	$\begin{gathered} \hline(280) \\ \mathbf{R g} \\ 111 \\ \hline \end{gathered}$	$\begin{gathered} \hline(285) \\ \text { Cn } \\ 112 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline(284) \\ \mathbf{N h} \\ 113 \\ \hline \end{array}$	$\begin{gathered} \hline \text { (289) } \\ \text { Fl } \\ 114 \\ \hline \end{gathered}$	$\begin{gathered} \hline(288) \\ \mathbf{M c} \\ 115 \\ \hline \end{gathered}$	$\begin{gathered} \hline(293) \\ \mathbf{L v} \\ 116 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (294) } \\ \text { Ts } \\ 117 \\ \hline \end{gathered}$	$\begin{gathered} (294) \\ \mathbf{O g} \\ 118 \\ \hline \end{gathered}$
		$\begin{gathered} 138.906 \\ \mathbf{L a} \\ 57 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 140.115 \\ \text { Ce } \\ 58 \\ \hline \end{array}$	$\begin{gathered} 140.908 \\ \mathbf{P r} \\ 59 \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} 144.24 \\ \text { Nd } \\ 60 \end{array} \\ & \hline \end{aligned}$	(145) Pm 61	$\begin{gathered} 150.36 \\ \mathbf{S m} \\ 62 \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 151.965 \\ \text { Eu } \\ 63 \\ \hline \end{array}$	157.25 Gd 64	$\begin{array}{\|l} \hline 158.925 \\ \mathbf{T b} \\ \hline 65 \\ \hline \end{array}$	$\begin{gathered} 162.50 \\ \mathbf{D y} \\ 66 \end{gathered}$	164.930 Но 67	$\begin{aligned} & 167.26 \\ & \text { Er } \\ & 68 \\ & \hline \end{aligned}$	$\begin{gathered} 168.934 \\ \mathbf{T m} \\ 69 \\ \hline \end{gathered}$	$\begin{gathered} 173.04 \\ \mathbf{Y b} \\ 70 \\ \hline \end{gathered}$	$\begin{gathered} 174.967 \\ \mathbf{L u} \\ 71 \\ \hline \end{gathered}$	
		$\begin{gathered} 227.028 \\ \text { Ac } \\ 89 \\ \hline \end{gathered}$	$\begin{aligned} & 232.038 \\ & \mathbf{T h} \\ & 90 \end{aligned}$	$\begin{gathered} 231.036 \\ \mathbf{P a} \\ 91 \\ \hline \end{gathered}$	$\begin{aligned} & 238.029 \\ & \mathbf{U} \\ & 92 \end{aligned}$	$\begin{aligned} & 237.048 \\ & \mathbf{N p} \\ & 93 \end{aligned}$	$\begin{gathered} (240) \\ \mathbf{P u} \\ 94 \end{gathered}$	$\begin{gathered} (243) \\ \text { Am } \\ 95 \end{gathered}$	$\begin{gathered} \hline(247) \\ \mathbf{C m} \\ 96 \end{gathered}$	$\begin{gathered} (247) \\ \text { Bk } \\ 97 \end{gathered}$	$\begin{gathered} (251) \\ \mathbf{C f} \\ 98 \end{gathered}$	$\begin{aligned} & \hline \text { (252) } \\ & \text { Es } \\ & 99 \end{aligned}$	$\begin{gathered} (257) \\ \text { Fm } \\ 100 \end{gathered}$	$\begin{gathered} \hline(258) \\ \text { Md } \\ 101 \end{gathered}$	$\begin{gathered} \text { (259) } \\ \mathbf{N o} \\ 102 \end{gathered}$	$\begin{gathered} (262) \\ \mathbf{L r} \\ 103 \end{gathered}$	

Developed by Prof. R. T. Boeré (updated 2016)

