Exercize 14 - Isomerism

Question One

Draw all 5 of the isomers of hexane: $\mathrm{C}_{6} \mathrm{H}_{14}$. showing only the C atoms. Identify all of the $1^{\circ}, 2^{\circ}$ and 3° carbons.

Question Two

Heteroatoms are no problem. Just remember in CHON Tinkertoy, there are 3 holes in N, 2 in O, 4 in C and 1 in H . Work out the connectivities of the 4 isomers of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ and 3 isomers of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.

Question Three
Draw all of the isomers (structural and stereoismers) having the formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}^{2}$ and $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$. How many units of unsaturation in each molecule? There are a surprising number of isomers for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$.
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
Cyclic compounds:

Alkenes

These are examples of the "imine" functional group.

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$
Cyclic molecules

Alkynes
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{OH} \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{OCH}_{3}$

Those molecules with two double bonds

Question Four

There are more than one answer for some of these.
Give the structure of an organic molecule (carbon and hydrogen only) that has:
a.) more than three carbons and has only primary hydrogens (primary hydrogens are hydrogens attached to a primary carbon, etc.)
b.) only five carbons and has only secondary carbons
c.) only tertiary hydrogens.
a

b

c.) only tertiary hydrogens.

These are prismane and cubane respectively. Both are known.

Question Five

In each of the following sets, indicate whether the diagrams are of the same or different molecules.
i)

ii)

iv)

iii)

v)

